
1

The FuzzyLite Libraries for Fuzzy Logic Control
Juan Rada-Vilela, PhD. FuzzyLite Limited. Wellington, New Zealand.

Abstract—Fuzzy Logic Controllers (FLCs) are mathematical
models designed to control systems by means of fuzzy logic. Their
simplicity, flexibility, interpretability, and handling of uncertainty
have seen them applied to address different problems in a variety
of domains. The seminal ideas of FLCs date back to 1965, and
today there are more than 20 software libraries that provide
such a functionality with different degrees of success. In spite of
the widespread usage of FLCs, many of these libraries have not
yet been thoroughly compared, hence raising questions about
their correctness, performance, and accuracy when having to
choose a library among them. In this article, we compare some
of the most relevant libraries to design and operate FLCs,
namely the FuzzyLite libraries, Matlab, Octave, and jFuzzyLogic.
These libraries are evaluated on a set of 20 benchmarks that
include Mamdani and Takagi-Sugeno FLCs as well as different
membership functions. Our focus is on the performance and
accuracy of the libraries, but we also consider the number of
features and the amount of source code documentation to rate
their overall quality. The results show that the FuzzyLite libraries
offer the most accurate results, the highest number of features,
the second best performance, and the second most documented
source code, thus ranking them first for overall quality. The next
libraries in the rankings are Octave, Matlab, and jFuzzyLogic
(respectively). Our analysis of results finds explanations for the
differences in performance and accuracy between the libraries,
which provides useful information not only to further improve
their quality, but also for users to make better and more informed
decisions when having to choose one.

Index Terms—Fuzzy control, Software libraries, Open-source
software, Software metrics

I. INTRODUCTION

Fuzzy Logic Controllers (FLCs) are mathematical models
designed to control systems by means of fuzzy logic [1].
Specifically, a FLC consists of input variables, output vari-
ables, and a set of inference rules that control the relationship
between the variables. By using fuzzy logic, uncertainty is
inherently represented and accounted for in the design and
operation of the controller. For example, the temperature of
an office can be controlled by a FLC using two rules stated
as “if office is hot then fan is fast” and “if office is cold then
fan is slow”, where “office” is the input variable representing
temperature as “hot” and “cold”, and “fan” is the output
variable representing the speed of a fan as “fast” and “slow”.
Thus, the underlying mathematics of FLCs are abstracted by
using natural language that incorporates the imprecision and
vagueness of human decision making [2]. This simplicity,
flexibility, interpretability, and handling of uncertainty has
been exploited in machine learning [3], decision making [4],
drone control [5], self-driving cars [6], collective robotics [7],
sensor networks [8], computer games [9], among others [10];
and more generally in domains like medicine [11], bioinfor-
matics [12], chemistry [13], agriculture [14], and others [15].

The field of fuzzy logic started in 1965 with the seminal
work of Lofti Zadeh [1], and today there are more than 20

software libraries to model FLCs [16], [17]. In no particular
order, we consider the following to be some of the most rele-
vant libraries today: Matlab and its Fuzzy Logic Toolbox [18],
Octave and its Fuzzy Logic Toolkit [19], jFuzzyLogic [16],
[17], and the FuzzyLite libraries [20]. We consider these to
be relevant libraries mainly because of their relatively high
number of features, but also because (a) their source code is
available and well designed and documented, (b) they have
been maintained for at least five years, and (c) they have an
important user base judging by their ranks in search engines
and available download metrics. We want to highlight the
contributions of these libraries to the scientific community by
adopting open-source licenses [21] and, in the case of Matlab,
for making the source code commercially available.

The FuzzyLite libraries refer to the fuzzylite and jfuzzylite
libraries for the C++ and Java programming languages, respec-
tively. The goal of the FuzzyLite libraries is to easily design
and efficiently operate FLCs following an object-oriented pro-
gramming model without relying on external libraries. Started
in 2010 and 2012, the FuzzyLite libraries are the most recent
addition to fuzzy logic control software among the libraries
here considered. Thus, we are interested in comparing them
against some of the most relevant libraries for fuzzy logic
control, particularly in terms of performance and accuracy.
In addition, considering that a FLC can be configured with
a variety of membership functions, we want to rank the
performance of the libraries on different configurations in
order to provide guidelines that will aid the design of more
efficient FLCs. While previous works [16], [17] have compiled
information about more than 20 libraries, these works did not
focus on performance or accuracy, and did not include the
FuzzyLite libraries. Hence, up to date, it is not certain which
libraries offer the best performance or the best accuracy, let
alone which membership functions are the most efficient.

The overall goal of this article is to introduce the FuzzyLite
libraries and compare them against some of the most relevant
open-source libraries for fuzzy logic control. Specifically, we
will focus on the following objectives:

• Introduce the FuzzyLite libraries and their components.
• Compare the performance and accuracy between the

different libraries.
• Identify the best performing configurations of FLCs.
• Rank the libraries according to their overall quality.

The remainder of this article is structured as follows.
Section II presents related work and the software libraries.
Section III presents an introduction to fuzzy logic control.
Section IV presents the FuzzyLite libraries and their compo-
nents. Section V presents the design of experiments to compare
the libraries. Section VI presents the results and discussions.
Lastly, Section VII presents the conclusions and future work.

Copyright c© 2018 FuzzyLite Limited. All rights reserved.

2

II. RELATED WORK

The most comprehensive comparison of libraries for fuzzy
logic control can be found in [16] and [17], where the authors
present their own library, namely jfuzzylogic, and a compar-
ison of 26 free and open-source libraries. The libraries were
compared on six categories, namely programming language,
membership functions, latest release, code availability and
usability, functionality, and support for the Fuzzy Control
Language (FCL) standard (IEC 61131-7:2000). The authors
report the following findings: (a) the libraries were mainly
programmed in Java (13/26) and C/C++ (11/26); (b) only five
libraries provided more than ten membership functions, and
jfuzzylogic provided 14, which was the second highest number
among those compared; (c) nine libraries had not released new
versions in the last three years or more; (d) the development
of only eight libraries appeared to be currently active; (e) the
functionality of nine libraries is targeted at specific purposes;
and (f) only four of the libraries support the FCL standard,
and two of them are based on jfuzzylogic. The authors did
not include the FuzzyLite libraries.

A. Matlab

The Matlab Fuzzy Logic Toolbox [18] is a component of the
Matlab computing environment to design and operate FLCs
using the Matlab scripting language or the Fuzzy Inference
System (FIS) format. The toolbox also provides a library
programmed in C, which we refer to as cfis, that allows
the FLCs designed in Matlab to be compiled as stand-alone
applications. The Matlab computing environment and toolbox
are sold separately under proprietary licenses. The source code
of the Fuzzy Logic Toolbox is privately available with the
purchase of a license. Besides fuzzy logic control, the toolbox
provides adaptive neuro-fuzzy modeling [22] and fuzzy data
clustering [23]. The current version of the toolbox is R2018b,
released in September 2018. The toolbox provides the follow-
ing features for FLCs. (2) Controllers: Mamdani and Takagi-
Sugeno. (14) Membership functions: triangle, trapezoid,
bell, gaussian, gaussian product, pi-shape, sigmoid difference,
sigmoid product, sigmoid, s-shape, z-shape, constant, linear,
and custom functions. (3) T-norms: minimum, product, and
custom functions. (3) S-norms: maximum, algebraic sum, and
custom functions. (8) Defuzzifiers: centroid, bisector, smallest
of maxima, mean of maxima, largest of maxima, weighted
average, weighted sum, and custom defuzzifiers. (1) Hedges:
not. (1) Importer: FIS. (1) Exporter: FIS.

B. Octave

The Octave Fuzzy Logic Toolkit [19] is a component of the
Octave computing environment to design and operate FLCs
using the Octave scripting language or the FIS format, both
of which are mostly compatible with the Matlab counter-
parts. The Octave computing environment and toolkit are free
and open source, licensed under the GNU General Public
License 3. Besides fuzzy logic control, the toolkit provides
fuzzy data clustering [23]. The current version of the toolkit
is 0.4.5, released in 2014. The toolkit provides the following

features for FLCs. (2) Controllers: Mamdani and Takagi-
Sugeno. (14) Membership functions: triangle, trapezoid, bell,
gaussian, gaussian product, pi-shape, sigmoid difference, sig-
moid product, sigmoid, s-shape, z-shape, constant, linear, and
custom functions. (7) T-norms: minimum, product, bounded
difference, drastic product, einstein product, hamacher prod-
uct, and custom functions. (7) S-norms: maximum, algebraic
sum, bounded sum, drastic sum, einstein sum, hamacher sum,
and custom functions. (8) Defuzzifiers: centroid, bisector,
smallest of maxima, mean of maxima, largest of maxima,
weighted average, weighted sum, and custom defuzzifiers.
(6) Hedges: not, somewhat, very, extremely, very very, and
custom functions. (1) Importer: FIS. (1) Exporter: FIS.

C. jFuzzyLogic

jFuzzyLogic [16], [17] is a free and open-source library
programmed in Java, which supports the FCL to design FLCs.
The library is licensed under the GNU Lesser General Public
License 3 and the Apache License 2.0. Besides fuzzy logic
control, jfuzzylogic provides different algorithms for param-
eter optimization. The current version of jfuzzylogic is 3.3,
released in 2015. The library provides the following features
for FLCs. (2) Controllers: Mamdani and Takagi-Sugeno.
(14) Membership functions: triangle, trapezoid, discrete, bell,
cosine, gaussian, gaussian product, sigmoid difference, sig-
moid, s-shape, z-shape, constant, linear, and custom functions.
(6) T-norms: minimum, product, bounded difference, drastic
product, hamacher product, and nilpotent maximum. (6) S-
norms: maximum, algebraic sum, bounded sum, drastic sum,
hamacher sum, and nilpotent minimum. (6) Defuzzifiers: cen-
troid, bisector, smallest of maxima, mean of maxima, largest
of maxima, and weighted average. (1) Hedges: not. (1) Im-
porter: FCL. (2) Exporter: FCL, and (not fully operational)
C++.

III. DESIGN AND OPERATION OF A FUZZY LOGIC
CONTROLLER

In this section, we present an a brief introduction to the
design and operation of FLCs using four types of inference,
namely Mamdani [24], Larsen [25], Takagi-Sugeno [26], and
Tsukamoto [27]. For a rigorous introduction, we recommend
the reader to refer to [1], [28]–[30].

The design of a FLC can be summarized in three steps.
First, modeling the inputs and outputs of a control system as
linguistic variables. Second, creating the set of inference rules
(based on the linguistic variables) to control the system. Third,
configuring the controller according to the type of inference.
The operation of a FLC consists of three stages. First, the
fuzzification stage converts the value xi ∈ R of input variable
i into a fuzzy value x̃i. Second, the inference stage evaluates
the rules and aggregates the consequents into the respective
fuzzy outputs. Third, the defuzzification stage converts the
fuzzy output ỹj of output variable j into the output value
yj ∈ R. The design and operation of a FLC is represented in
Figure 1 for a typical example.

The following sections provide more details into the design
and operation of FLCs.

Copyright c© 2018 FuzzyLite Limited. All rights reserved.

3

Fu
zz

y
L

og
ic

C
on

tr
ol

le
r

service food

fuzzification

xservice xfood

inference
rule r1

...
rule rn

x̃service x̃food

defuzzification

ỹtip

tip

ytip

Fig. 1: Tipper example. Design and operation of a FLC to determine the
amount to tip at a restaurant based on the quality of the service and the
quality of the food.

A. Linguistic Variables

Linguistic variables [29] represent the input variables and
output variables of a control system. A linguistic variable
consists of linguistic terms that represent the states of the
variable, each of which is characterized by a membership
function µ : v → R. A membership function determines the
activation degree of the state it represents for every possible
value v ∈ R that the variable can take. Thus, a linguistic
variable has a crisp set of terms when µj(v) ∈ {0, 1} for each
term j, and a fuzzy set of terms when µj(v) ∈ [0.0, 1.0] for
each term j.

Considering the tipper example, the linguistic variables for
service, food, and tip are designed in Figure 2.

B. Rules

The set of rules in FLCs are conditional statements that
determine the relation between the input variables and the
output variables of a system. Each rule is written in the
form “if antecedent then consequent”, where the antecedent
and consequent contain one or more propositions in the form
“variable is term”. In the antecedent, multiple propositions are
connected by “and” or “or”, which are fuzzy operators for
conjunction and disjunction, respectively. In the consequent,
the propositions are independent from each other, and are
connected by a symbolic “and”, which is just a delimiter.
The general structure of a rule is presented in Figure 3,
where “hedge” refers to linguistic hedges [30] (e.g., not, very,
somewhat) that optionally precede the linguistic terms, and the
weight w ∈ [0.0, 1.0] determines the importance of the rule
(by default w = 1.0).

Considering the tipper example, the set of rules controlling
the system are presented in Figure 4.

poor good excellent

0.00

0.25

0.50

0.75

1.00

0.0 2.5 5.0 7.5 10.0
xservice

µ(
x s

er
vi

ce
)

rancid delicious

0.00

0.25

0.50

0.75

1.00

0.0 2.5 5.0 7.5 10.0
xfood

µ(
x f

oo
d)

cheap average generous

0.00

0.25

0.50

0.75

1.00

0 10 20 30
ytip

µ(
y t

ip
)

Fig. 2: Design of the linguistic variables for the tipper example.

if variable [hedge]∗ is term[
(and|or) variable [hedge]∗ is term

]∗
then variable [hedge]∗ is term[

and variable [hedge]∗ is term
]∗ [with w]?

Fig. 3: General structure of a rule, where the elements in bold are keywords,
within brackets are optional, ∗-marked may appear zero or more times, and
?-marked may appear once or not at all.

C. Fuzzification

The fuzzification stage computes the activation degrees of
the rules based on the antecedents and the importance of the
rules. Specifically, the activation degree αi ∈ R of rule i is
given by αi = α′i×wi, where α′i ∈ R refers to the evaluation
of the antecedent, and wi is the importance of the rule.
The evaluation of the antecedent is the result of computing
(1) the translation of each proposition “variable is term”
into its corresponding membership function µterm(xvariable),
and (2) the translation of the fuzzy operators joining the
propositions into T-norms and S-norms (for conjunction and
disjunction, respectively). Given any two values p and q, the
conjunction operation is written as p?q, which translates to a
T-norm function >(p, q) ∈ [0.0, 1.0]. Likewise, the disjunction
operation is denoted by p > q, which translates to an S-
norm function ⊥(p, q) ∈ [0.0, 1.0]. Typical examples of T-
norm and S-norm functions are the minimum and maximum
(respectively) between any two values.

Considering the set of rules defined for the tipper example,
the activation degree for each rule is computed according to
Equation (1), where xservice and xfood refer to the input values
of the variables service and food, respectively.

α1 = µpoor (xservice) > µrancid(xfood)

α2 = µgood(xservice)

α3 = 0.5× (µexcellent(xservice) > µdelicious(xfood))

α4 = µexcellent(xservice) ? µdelicious(xfood)

(1)

Copyright c© 2018 FuzzyLite Limited. All rights reserved.

4

if service is poor or food is rancid then tip is cheap
if service is good then tip is average
if service is excellent or food is delicious then tip is
↪→ generous with 0.5
if service is excellent and food is delicious then tip is
↪→ generous with 1.0

Fig. 4: Set of rules for the tipper example.

D. Inference

The inference stage activates the consequents of the rules
and aggregates them into their corresponding output variables.
As such, the inference stage produces the fuzzy values for each
output variable referenced in the consequents.

Considering the activation degrees from Equation (1), the
fuzzy output value of the variable tip is given by:

ỹtip = f̃tip(xservice, xfood) =
α1

cheap
+

α2

average
+

(α3 + α4)

generous
(2)

E. Defuzzification

Lastly, the defuzzification stage converts each fuzzy output
value ỹ into a crisp value y ∈ R by means of a defuzzifier [31].
Depending on the type of inference, a defuzzifier can be based
on integration or based on weights. An integration-based de-
fuzzifier computes the crisp value by means of integration over
the fuzzy value (e.g., centroid). A weight-based defuzzifier
uses weights and values determined accordingly to compute
the crisp value (e.g., weighted average).

Considering the output variable tip, its crisp output value
is given by Equation (3), where the function ftip is defined
accordingly by the defuzzifier.

ytip = ftip(xservice, xfood) (3)

F. Mamdani and Larsen Controllers

Mamdani and Larsen FLCs, or simply Mamdani-based
FLCs, are designed with (a) fuzzy operators for implication
and aggregation, (b) output variables having fuzzy sets of
terms, and (c) an integration-based defuzzifier. The implication
operator is a T-norm that utilizes the activation degree of the
rule to modulate the terms in its consequent. The aggregation
operator is an S-norm that aggregates the activated terms of
the consequents in the output variable. Lastly, the defuzzifier
translates the aggregated terms into a crisp output value via
integration.

Considering the centroid defuzzifier on the output variable
tip, its crisp value is given by Equation (4), where [a, b] is
the range of the output variable, z ∈ R takes values in the
discretized range [a, b], and f ′tip evaluates the fuzzy output
value at z. The function f ′tip is given by Equation (5), where
the binary operators ⊗ and ⊕ translate to the T-norm and S-
norm used for implication and aggregation, respectively.

ftip(xservice, xfood) =

∫ b
a
zf ′tip(xservice, xfood, z) dz∫ b
a
f ′tip(xservice, xfood, z) dz

(4)

f ′tip(xservice, xfood, z) = [α1 ⊗ µcheap(z)]

⊕ [α2 ⊗ µaverage(z)]

⊕ [α3 ⊗ µdelicious(z)]

⊕ [α4 ⊗ µdelicious(z)]

(5)

G. Takagi-Sugeno Controllers

Takagi-Sugeno FLCs are designed with (a) output variables
having special terms, and (b) a weight-based defuzzifier. The
output variables have terms whose membership functions
reflect a constant value or a linear combinations of the input
values. The constant value is any k ∈ R, and the linear
combination of input values is in the form

∑
i cixi+k, where

ci, xi ∈ R are the coefficient and input value for variable i.
The weight-based defuzzifier is computed using the results of
the membership functions as values and the activation degrees
as weights.

Considering the output variable tip containing the constant
terms cheap = 5, average = 15, and generous = 25, then
its crisp output value computed with the weighted-average
defuzzifier is given by:

ftip(xservice, xfood) =

α1cheap + α2average

+ α3delicious + α4delicious

α1 + α2 + α3 + α4
(6)

H. Tsukamoto Controllers

Tsukamoto FLCs are designed with (a) output variables
having monotonic terms, and (b) a weight-based defuzzifier.
The terms in the output variables have either monotonically
increasing or monotonically decreasing membership functions,
i.e., for all x ≤ y then µ(x) ≤ µ(y) or µ(x) ≥ µ(y),
respectively. The weight-based defuzzifier uses the activation
degrees as weights, and for the values uses the arguments of
the membership functions that produce the respective activa-
tion degrees.

Considering the output variable tip containing only mono-
tonically increasing (or decreasing) terms, then its crisp output
value computed with the weighted-average defuzzifier is given
by:

ftip(xservice, xfood) =

α1gcheap(α1) + α2gaverage(α2)

+ α3gdelicious(α3) + α4gdelicious(α4)

α1 + α2 + α3 + α4
(7)

where

gj(α) = {z ∈ R : µj(z) = α} (8)

IV. THE FUZZYLITE LIBRARIES

The FuzzyLite libraries refer to our free and open-source
generic implementations of FLCs, namely fuzzylite and
jfuzzylite, available at github.com/fuzzylite. The fuzzylite li-
brary was programmed using the C++ language [32] and its

Copyright c© 2018 FuzzyLite Limited. All rights reserved.

https://github.com/fuzzylite/

5

Standard Template Library (STL), following the C++98 stan-
dard (ISO/IEC 14882:1998), and recently including features
of the C++11 standard (ISO/IEC 14882:2011). The jfuzzylite
library is the equivalent of fuzzylite, but it is programmed
using the Java language [33] following the Java 6.0 specifi-
cation. Both libraries, currently in their sixth version, were
released in March 2017 and licensed under the GNU General
Public License 3 and a commercial license. The goal of the
commercial license is to raise funds in order to continue the
development of the FuzzyLite libraries.

The FuzzyLite libraries are programmed to be object-
oriented, dependency-free, and multi-platform. The object-
oriented programming model [34] abstracts the components
and operation of FLCs into classes and methods. The
dependency-free aspect means that the libraries do not rely on
other libraries for their operation. The multi-platform focus
enables the libraries to be used in operating systems for the
desktop (e.g., Windows, macOS, Linux), mobile (e.g., iOS,
Android), and in robots (using ROS [35]).

The FuzzyLite libraries are mature software whose devel-
opment started in 2010 for fuzzylite and 2012 for jfuzzylite.
According to the COCOMO model [36]1, the current version
of the fuzzylite library has an estimated development cost of
US$888 155 based on 14 949 physical source lines of code,
an estimated required effort of 41.10 Person-Months, and
a predicted duration of 10.26 months for four developers.
Likewise, the estimated cost to develop the jfuzzylite library
is US$747 496 based on 12 692 physical source lines of code,
an estimated required effort of 34.59 Persons-Months, and a
predicted duration of 9.61 months for four developers.

The remainder of this section presents the main components
and operation of the FuzzyLite libraries.

A. Linguistic Variables

Linguistic variables [29] are abstract concepts that represent
the variables of a control system. A linguistic variable is
generalized by the class Variable, which basically consists
of a name and description, a value vt ∈ R at time t, a
range [a, b] ∈ R for vt, a boolean lock lv that enforces
vt ∈ [a, b] when lv = T, a boolean indicator to enable
the variable, and a set of linguistic terms that represent
the states of the variable. A Variable represents an input
variable or an output variable by means of the subclasses
InputVariable and OutputVariable, respectively. For the
purpose of distinction, the value vt is referred to as xt when
the variable is an input variable, and yt when it is an output
variable.

The InputVariable implements an additional method to
provide a text representation of the fuzzification of xt in the
form of Equation (2). The OutputVariable consists of the
fuzzy output value ỹt represented by the class Aggregated,
a defuzzifier to compute the crisp output value yt, the default
value k ∈ R that is enforced on yt when the fuzzy output

1The COCOMO model is estimated by David A. Wheeler’s
SLOCCount application (dwheeler.com/sloccount/) using coefficients
for an organic project, and the estimated annual salary of US$108 059
for a software engineer in 2017 according to ComputerWorld
(computerworld.com/salarysurvey/tool/2017/).

value is empty (i.e., ỹt = ∅), the value ẏt ∈ R that
retains the previous most recent valid output value of the
variable, and a boolean lock lẏ that sets yt ← ẏt when
ỹt = ∅ (taking precedence over the default value k). Thus,
the output value of an OutputVariable is determined as
shown in Figure 5, where defuzzify uses the defuzzifier of
the OutputVariable to defuzzify ỹt.

if yt−1 6∈ {−∞,∞, NaN}
ẏt ← yt−1

/*update previous value at time t*/

if ỹt 6= ∅
yt ← defuzzify(ỹt, a, b) /*defuzzify current value*/

else
if lẏ = T

yt ← ẏt
/*use previous value at time t*/

else
yt ← k /*use default value*/

if lv = T

yt ←

a if yt < a

b if yt > b

yt otherwise
/*ensure yt ∈ [a, b]*/

Fig. 5: Algorithm to compute the crisp value of an output variable.

B. Linguistic Terms

Linguistic terms are abstract states of linguistic variables. A
linguistic term is generalized by the class Term, which basi-
cally consists of a name, a height h ∈ [0.0, 1.0] that multiplies
the membership function value, and a membership method
that computes the membership function value. There are
21 implementations of linguistic terms that provide different
membership functions, and we classify them into four groups:
basic, extended, edges, and functions. The basic group com-
prise the functions whose computation utilizes only arithmetic
operations. The extended group comprise the functions whose
computation utilizes arithmetic operations and functions (e.g.,
exponentiation, trigonometric). The edges group comprise
monotonic functions. The functions group comprise linear and
custom functions. Table I shows a graphical representation of
the available linguistic terms in FuzzyLite.

In addition to these linguistic terms, Activated and
Aggregated are two special terms that are convenient abstrac-
tions for the inference and defuzzification stages of the opera-
tion of FLCs. An Activated term represents the modulation
of a linguistic term from a specific proposition contained in the
consequent of a rule; that is, an Activated term denoted by
p contains the activation degree α, the implication operator ⊗,
and the term to activate µi such that its modulation is given
by µp(x) = α ⊗ µi. An Aggregated term represents the
aggregation of all the activated terms for an output variable;
that is, an Aggregated term denoted by q contains a set of
n activated terms and the aggregation operator ⊕ such that
µq(x) = µp1(x) ⊕ . . . ⊕ µpj (x) ⊕ . . . ⊕ µpn(x). Notice that,
in the cases of Takagi-Sugeno and Tsukamoto controllers, the
implication and aggregation operators of their special terms
translate to regular multiplications and sums, respectively.

Copyright c© 2018 FuzzyLite Limited. All rights reserved.

http://dwheeler.com/sloccount/
http://computerworld.com/salarysurvey/tool/2017

6

TABLE I: Available implementations of linguistic terms in FuzzyLite. The
Binary, Concave, Ramp, and Sigmoid terms present two opposing
configurations. The Function term g(z) is a custom function processed
at runtime, and is internally represented as a binary expression tree.

basic extended

Triangle Bell PiShape

Trapezoid Cosine SigmoidDifference

Rectangle Gaussian SigmoidProduct

Discrete

●
●

●
●

●
●

●
●

●
●

●
●

●●●●●●●●●●●●●●●●●●●●●●●●●●●
●

●
●

●
●

●
●

●
●

●
●

●

GaussianProduct Spike

edges

Binary Ramp SShape

Concave Sigmoid ZShape

functions

Function

f : z → g(z)

Constant

f(z) = k

Linear

f(z) =
∑

i cixi + k

C. Rule Blocks

Rule blocks comprise the sets of rules that control the
system. A rule block is represented by the class RuleBlock,
which consists of a name and description, a set of rules, an
activation method, and the fuzzy operators for conjunction,
disjunction and implication. By not having the aggregation
operator in the rule block, but rather in the aggregated terms
of the output variables, a FLC can be configured with multiple
rule blocks acting on the same set of output variables.

1) Rules: A rule is represented by the class Rule, which
basically consists of an Antecedent, a Consequent, an
activation degree α, and a weight w.

The antecedents of a rule are parsed from text using
the Shunting-Yard algorithm [37] and Finite State Machines
(FSMs) [38] to produce a binary expression tree of proposi-
tions. The operators in the tree refer to the conjunction and
disjunction operators used to join the propositions, whereas the
operands in the tree refer to the evaluation of the propositions.
By using this data structure, an antecedent can have any
number of propositions joined by different operators following
the conventional order of precedence (from first to last):
parentheses, “and”, and “or”. The evaluation of a proposition
“variable is term” results in zero if the variable is disabled, or
in the membership function value µterm(xvariable) otherwise.
If the proposition contains hedges, the right-most hedge is
applied on the membership function first, and the remaining
hedges are applied on the result from the previous hedge. For
example, the proposition “service is seldom not very good”
evaluates to seldom(not(very(µgood(xservice)))). Besides
input variables, the propositions in the antecedent can also

utilize output variables, in which case the evaluation of the
proposition corresponds to the activation degree of the term
in the fuzzy output value.

The consequents of a rule are parsed from text using
FSMs to produce a list of propositions, which determines
the terms to be activated in the output variables. When a
rule is activated, the terms in the propositions are added
to new Activated terms, passing the respective activation
degrees, and the implication operator (in the case of Mamdani-
based FLCs). These Activated terms are then added to the
Aggregated terms of the respective output variables.

2) Fuzzy Logic Operators: A rule block requires a conjunc-
tion operator if there is at least one rule that utilizes the “and”
connective. Likewise, it requires a disjunction operator if a rule
utilizes the “or” connective. For Mamdani-based FLCs, the
implication and aggregation operators are required, but such
is not the case for Takagi-Sugeno and Tsukamoto controllers.

The fuzzy logic operators for conjunction and implication
are represented by the class TNorm, and those for disjunction
and aggregation are represented by the class SNorm. Table II
shows the 16 implementations of T-norms and S-norms avail-
able in FuzzyLite, which includes the TNormFunction and
SNormFunction that allow to create arbitrary functions at
runtime.

TABLE II: Available implementations of T-norms and S-norms in FuzzyLite.
The figures show the result of each norm for 11 values of x, y ∈ [0.0, 1.0]
equally distributed, where the color white indicates zero, black indicates one,
and gray scales indicate the values in between.

Minimum Maximum AlgebraicProduct AlgebraicSum

BoundedDifference BoundedSum DrasticProduct DrasticSum

EinsteinProduct EinsteinSum HamacherProduct HamacherSum

NilpotentMinimum NilpotentSum TNormFunction SNormFunction

>(x, y)
∈ [0.0, 1.0]

⊥(x, y)
∈ [0.0, 1.0]

3) Activation Methods: The activation methods refer to
the strategies to activate the rules in a rule block. In to-
tal, there are seven implementations of activation methods.
The General activation method activates the rules in the
order that were added to the rule block. The Highest and
Lowest activation methods sort the rules by activation degree
(ascending and descending, respectively) and only activates

Copyright c© 2018 FuzzyLite Limited. All rights reserved.

7

the first n rules. The First and Last activation methods
respectively activate the first and last n rules (in insertion
order) whose activation degrees are greater than or equal to a
given threshold θ ∈ R. The Proportional activation method
computes and normalizes the activation degrees of the rules
so that, from a set of n rules, each rule i is activated instead
with α∗i = αi∑n

j=1 αj
such that

∑n
i=1 α

∗
i = 1.0. Lastly, the

Threshold activation method activates the rules (in insertion
order) whose activation degrees satisfy α � θ, where � is a
relational operator � ∈ {=, 6=, <,>,≤,≥}, and θ ∈ R is the
threshold.

D. Defuzzifiers

The defuzzifiers [31] convert the fuzzy values of the output
variables into crisp values. The defuzzifiers are represented
by the abstract class Defuzzifier, which is subclassed
by two abstract classes for integration-based and weight-
based defuzzification, namely IntegralDefuzzifier and
WeightedDefuzzifier.

On the one hand, the defuzzification methods that subclass
IntegralDefuzzifier approximate the integral over the
fuzzy output value at a given resolution r that defaults to r =
100. The resolution determines the number of sub-intervals to
divide the fuzzy output value into, and hence it balances the
trade-off between accuracy and performance. Specifically, a
higher resolution provides a more accurate defuzzification at
the cost of performance, whereas a lower resolution provides
a better performance at the cost of accuracy. The imple-
mentations of integration-based defuzzifiers are the following
five. The Centroid method computes the x-coordinate of
the geometric center of the fuzzy value. The Bisector

method computes the x-coordinate that divides the fuzzy
value into two parts of equal area. The SmallestOfMaximum,
MeanOfMaximum and LargestOfMaximum respectively com-
pute the smallest, mean, and largest values of the x-coordinate
at the global maxima of the fuzzy value.

On the other hand, the defuzzification methods that sub-
class WeightedDefuzzifier utilize the membership func-
tion values of the activated terms and their respective ac-
tivation degrees as weights. In the case of Takagi-Sugeno
FLCs, the function values are obtained from the terms us-
ing the same membership method; whereas in Tsukamoto
FLCs, the monotonic terms (i.e., Concave, Ramp, Sigmoid,
SShape, and ZShape) implement the tsukamoto method
to satisfy Equation (8). The two implementations available
of weight-based defuzzifiers are the WeightedAverage and
WeightedSum, which respectively compute the weighted av-
erage and weighted sum of the fuzzy output value.

E. Engines

A FLC is represented by the class Engine, which consists
of a name and description, a set of input variables, a set
of output variables, and a set of rule blocks. An Engine

supports four types of inference (namely Mamdani [24],
Larsen [25], Takagi-Sugeno [26], and Tsukamoto [27]), which
are automatically determined according to the configuration
of the different components. Moreover, our object-oriented

design provides the option of configuring a single engine with
multiple types of inference simultaneously. For example, we
can design a hybrid engine with one or more rule blocks per-
forming Mamdani, Takagi-Sugeno, and Tsukamoto inference
on a set of output variables configured accordingly.

F. Importers and Exporters

A FLC can be represented in a language different from the
programming language that was used to create it. In doing so,
we are able to (a) remove the complexity of the programming
language, (b) focus specifically on the configuration of the
FLC, (c) represent the FLC regardless of implementation, and
(d) conveniently adapt the FLC to be stored and retrieved.
Thus, an importer is a component that creates and configures
FLCs from a specific representation, whereas an exporter
describes FLCs using a specific representation.

Importers and exporters subclass Importer and Exporter,
respectively, and the following are available in FuzzyLite.
The FllImporter and FllExporter use the FuzzyLite
Language (see Section IV-G). The FisImporter and
FisExporter use the FIS format used by matlab and octave.
The FclImporter and FclExporter use the FCL format
used by jfuzzylogic. The CppExporter and JavaExporter

generate the source code implementation of an engine us-
ing the fuzzylite and jfuzzylite libraries, respectively. The
FldExporter evaluates a FLC to generate a plain-text
column-based FuzzyLite Dataset (FLD), which can include the
input values, output values, and headers for the columns, all
separated by a given delimiter. Lastly, the RScriptExporter
creates an R [39] script using the ggplot2 [40] library to
draw the control surface of each output variable for any given
pair of input variables.

G. FuzzyLite Language

The FuzzyLite Language (FLL) is a representation of FLCs
that we designed to be simpler, more flexible, more concise,
and more efficient to parse than the FIS and FCL formats
for describing FLCs. The structure of the FLL is presented in
Figure 6, where the indentation and separation of properties
are customizable (default is two spaces and carriage return,
respectively), comments start with #, the property names and
property values are case-sensitive and separated by a colon,
parameters are separated by spaces, and none indicates an
unspecified value. The term and rule properties are repeated
for each term and rule available in the variable and rule
block, respectively. The square brackets around a value (e.g.,
[parameter]) and the pipe between two values (e.g., a|b)
are not part of the language: the square brackets indicate that
the value is optional, whereas the pipe indicates that either
one value or the other needs to be present.

Regarding the data types present in place of the property
values in Figure 6, a string refers to an identifier that
contains only letters and numbers, but no spaces or special
characters. The text refers to arbitrary text in a single line.
A boolean can be true or false. A scalar is a floating-
point value that can also take −∞, ∞, NaN, which are
represented by -inf, inf, and nan, respectively. A Term

Copyright c© 2018 FuzzyLite Limited. All rights reserved.

8

Comment: text
Engine: string
description: text

InputVariable: string
description: text
enabled: boolean
range: scalar scalar
lock-range: boolean
term: string Term [parameters]

OutputVariable: string
description: text
enabled: boolean
range: scalar scalar
lock-range: boolean
aggregation: SNorm|none
defuzzifier: [Defuzzifier [parameter]]|none
default: scalar
lock-previous: boolean
term: string Term [parameters]

RuleBlock: string
description: text
enabled: boolean
conjunction: TNorm|none
disjunction: SNorm|none
implication: TNorm|none
activation: [Activation [parameter]]|none
rule: if antecedent then consequent

Fig. 6: Structure of the FuzzyLite Language.

refers to the name of the class of the linguistic term, and it is
optionally followed by parameter values for the configuration
of its membership function (see Table III). The TNorm and
SNorm refer to the name of the class for the corresponding
T-norm and S-norm. The Defuzzifier refers to the name
of the defuzzifier. The Activation refers to the name of the
activation method. Lastly, the antecedent and consequent

are propositions expressed according to Figure 3.

TABLE III: Parameters of the membership functions. Each parameter is of
type scalar, except for Function, whose parameter is expressed as an
infix mathematical function. The height of the membership functions can be
specified by adding an extra scalar value at the end (except for Constant,
Linear, and Function).

parameters
term first second third fourth

Bell center width slope
Binary start direction
Concave inflection end
Constant value
Cosine center width

Discrete x0 y0 . . . xi yi . . . xn yn
Function f : x→ R
Gaussian mean stdev

GaussianProduct mean stdev mean stdev
Linear c0 . . . ci . . . cn k
PiShape bottom left top left top right bottom right

Ramp start end
Rectangle start end

Sigmoid inflection slope
SigmoidDifference left rising falling right

SShape start end
SigmoidProduct left rising falling right

Spike center width
Trapezoid vertex a vertex b vertex c vertex d
Triangle vertex a vertex b vertex c

ZShape start end

H. Factories

The factories refer to the implementation of the factory
design pattern [41] for multiple components of the libraries.
This design pattern centralizes the instantiation of objects and,
with the help of a registry, new objects that are external to the
library can be registered and instantiated. The factory design
pattern is specially useful for the FLL because, by register-
ing new objects in the factories, the FLL is automatically
extended to seamlessly handle the new objects. There are
seven factories available: the ActivationFactory for ac-
tivation methods, the DefuzzifierFactory for defuzzifiers,
the FunctionFactory for new functions and operators to
be used in the mathematical expressions of Function, the
HedgeFactory for linguistic hedges, the SNormFactory and
TNormFactory for S-norms and T-norms (respectively), and
the TermFactory for the linguistic terms and corresponding
membership functions.

I. Features

To summarize, the features available in FuzzyLite are the
following. (3) Controllers: Mamdani, Takagi-Sugeno, and
Tsukamoto. (21) Linguistic terms: (Basic) triangle, trapezoid,
rectangle, discrete; (Extended) bell, cosine, gaussian, gaussian
product, pi-shape, sigmoid difference, sigmoid product, spike;
(Edges) binary, concave, ramp, sigmoid, s-shape, z-shape;
and (Functions) constant, linear, and custom functions. (7)
Activation methods: general, proportional, threshold, first,
last, lowest, highest. (8) T-norms: minimum, algebraic prod-
uct, bounded difference, drastic product, einstein product,
hamacher product, nilpotent minimum, and custom functions.
(8) S-norms: maximum, algebraic sum, bounded sum, drastic
sum, einstein sum, hamacher sum, nilpotent maximum, and
custom functions. (7) Defuzzifiers: (Integration-based) cen-
troid, bisector, smallest of maximum, largest of maximum,
mean of maximum; and (Weight-based) weighted average,
weighted sum. (7) Hedges: any, not, extremely, seldom,
somewhat, very, and custom functions. (3) Importers: FLL,
FIS, FCL. (7) Exporters: C++, Java, FLL, FLD, FIS, FCL,
R script. (7) Factories: linguistic terms, activation methods,
T-norms, S-norms, defuzzifiers, hedges, and functions and
operators.

V. DESIGN OF EXPERIMENTS

The fuzzy logic control libraries that we are going to
compare are fuzzylite (6.0), jfuzzylite (6.0), matlab (R2016a),
cfis (R2016a), octave (4.0.2) with its fuzzy logic toolkit (0.4.5),
and jfuzzylogic (3.3). Specifically, we are going to compare
the libraries on a set of benchmarks designed to be simple
enough such that we can easily trace and explain our metrics of
interest, namely performance, rankings, accuracy, and overall
quality of the libraries. The performance refers to the analysis
on the computational time required by the libraries to evaluate
the benchmarks. The ranking refers to the analysis of the
differences in performance between the benchmarks. The
accuracy refers to the analysis of the numerical differences
between the libraries on the results obtained. Lastly, the overall
quality ranks the libraries from better to worse according to

Copyright c© 2018 FuzzyLite Limited. All rights reserved.

9

the indicators of performance, accuracy, number of features,
and source code documentation.

The set of benchmarks consists of 20 variations of a FLC
designed for a self-driving vehicle whose goal is to avoid
obstacles (see Figure 7). The FLC is configured with an
input variable indicating the location of the obstacle relative
to the vehicle, an output variable indicating the direction to
steer the vehicle to, and a rule block containing two rules
that steer the vehicle towards the opposite direction to the
location of the obstacle. Each benchmark defines the output
variable with a different membership function available in
FuzzyLite, except for the case of the ZSShape benchmark that
includes the ZShape and SShape. The Constant and Linear
benchmarks are Takagi-Sugeno FLCs using the weighted-
average defuzzifier; whereas the remaining benchmarks are
Mamdani FLCs using the centroid defuzzifier with resolution
r = 100, the minimum T-norm for implication, and the
maximum S-norm for aggregation. The availability of the
benchmarks in each library is presented in Table IV, and the
variations can be found in github.com/fuzzylite/performance.

Engine: ObstacleAvoidance
description: obstacle avoidance for self-driving cars

InputVariable: obstacle
description: location of obstacle relative to vehicle
enabled: true
range: 0.000 1.000
lock-range: false
term: left Triangle 0.000 0.333 0.666
term: right Triangle 0.333 0.666 1.000

OutputVariable: steer
description: direction to steer the vehicle to
enabled: true
range: 0.000 1.000
lock-range: false
aggregation: Maximum
defuzzifier: Centroid 100
default: nan
lock-previous: false
term: left Triangle 0.000 0.333 0.666
term: right Triangle 0.333 0.666 1.000

RuleBlock: steer-away
description: steer away from obstacles
enabled: true
conjunction: none
disjunction: none
implication: Minimum
activation: General
rule: if obstacle is left then steer is right
rule: if obstacle is right then steer is left

Fig. 7: Triangle benchmark in FLL

The performance of the libraries is measured by the average
time that a FLC spends evaluating the benchmarks over 50
independent runs. The evaluation of a benchmark consists
of computing the output values for a set of 100 000 input
values equally distributed along the range of the input variable.
The input values are preloaded in memory to ensure that the
computational performance only measures the operation of the
FLC. Each run is executed using the highest priority in the
operating system (i.e., using command nice -20 in macOS)
to minimize the influence of other processes. The most relevant
differences in performance will be analyzed by auditing the
source code of the libraries.

The ranking of the libraries on each benchmark is based on
the performance mentioned before, but the analysis will focus
on the computational cost of the different membership func-

TABLE IV: Availability of benchmarks in each library. The underlined bench-
marks are available in all libraries, whereas the rest are not readily available in
one or more libraries. The jfuzzylogic library provides a discrete membership
function that we use to evaluate the missing membership functions. While
jfuzzylogic provides custom functions, the options are limited and hence we
also had to discretized the benchmark Function.

benchmark
fuzzylite
jfuzzylite

matlab
cfis

octave jfuzzylogic

Bell yes yes yes yes
Binary yes no no discrete

Concave yes no no discrete
Constant yes yes yes yes

Cosine yes no no yes
Discrete yes no no yes
Function yes no no discrete
Gaussian yes yes yes yes

Gaussian Product yes yes yes yes
Linear yes yes yes yes

PiShape yes yes yes discrete
Ramp yes no no discrete

Rectangle yes no no discrete
Sigmoid yes yes yes yes

Sigmoid Difference yes yes yes yes
SigmoidP. yes yes yes discrete

Spike yes no no discrete
Trapezoid yes yes yes yes

Triangle yes yes yes yes
ZSShape yes yes yes discrete

tions. Hence, for each library, we will be able to classify the
membership functions into groups based on the computational
performance; thereby providing some experimental guidelines
to design more efficient FLCs in each library.

The accuracy of the libraries is measured by the Root Mean
Squared Error (RMSE) between the obtained output values and
the expected output values on each benchmark. The obtained
output values are the result of a single run over the set of
input values. In Takagi-Sugeno FLCs, we expect the libraries
to produce the same results because the operation of these
controllers reduce to an equation that computes the weighted
average over a set of values. If any result is different, we will
need to audit the source code of the libraries in order to find
the reason for the discrepancy. Contrarily, in Mamdani FLCs
we expect small differences in the results because the libraries
utilize different integration methods to defuzzify the fuzzy
output values, despite that the resolution of the defuzzifiers
is the same across libraries (r = 100). Thus, in order to
identify which library is more accurate, we will compute the
expected output values using defuzzifiers at a much higher
resolution (r = 100 000) to better approximate the true values;
and then the libraries whose obtained output values are closer
to the better approximations will be therefore more accurate.
While the FuzzyLite libraries compare floating-point values
using absolute error margins against ε = 1 × 10−6, in the
experiments we set ε = 0.0 to compare the values just like the
other libraries.

The fuzzylite and cfis libraries are compiled for the 64-
bit Intel architecture in Release mode with the default -O3
optimization flag and enabled features of the C++11 and C11
standards, respectively. The jfuzzylite and jfuzzylogic libraries
are compiled into uncompressed JAR files. The octave binaries

Copyright c© 2018 FuzzyLite Limited. All rights reserved.

https://github.com/fuzzylite/performance

10

are compiled automatically with the default formula found in
the Homebrew package manager (available at brew.sh/), which
by default does not enable the experimental Just-In-Time (JIT)
compiler and uses the Basic Linear Algebra Subprograms
(BLAS) provided by Apple. The experiments settings are
presented in Table V.

TABLE V: Experiment settings

benchmarks 20
independent runs 50

input/output values 100 000

computer MacBook Pro (Mid 2014)
processor 2.5 GHz Intel Core i7

operating system macOS X 10.11.5
memory 16 GB RAM

C/C++ compiler Apple LLVM version 7.3.0
Java compiler Oracle Java JDK 1.8.0 66

VI. RESULTS AND DISCUSSIONS

The results and discussions are structured as follows. In
Section VI-A, we present and discuss the performance of the
libraries. In Section VI-B, we present and discuss the ranking
of the benchmarks. In Section VI-C, we present and discuss the
accuracy of the libraries. Finally, in Section VI-D, we present
the overall quality of the libraries.

A. Performance

The performance of the libraries on the benchmarks is
presented in Table VI. The best performing libraries are cfis
and matlab, followed by fuzzylite and jfuzzylite, and lastly by
jfuzzylogic and octave. According to the one-sided pairwise
Wilcoxon rank sum test (at α = 0.05 with Holm correction),
the differences in performance between each pair of libraries
are all statistically significant. In the next sections, we discuss
some of the features that explain the performance of fuzzylite
and jfuzzylite with respect to the other libraries.

1) fuzzylite vs jfuzzylite: The two libraries utilize the same
class hierarchy, data structures, and data types, and yet, overall,
fuzzylite is faster than jfuzzylite by 0.645÷0.279 = 2.3x. We
expected fuzzylite to be faster because it is compiled into a
native executable, whereas jfuzzylite is compiled into bytecode
that is then interpreted by the Java Virtual Machine (JVM).
However, there are two benchmarks in which jfuzzylite is ac-
tually faster than fuzzylite, namely Constant and Linear by
0.023÷0.012 = 1.9x and 0.025÷0.013 = 1.9x (respectively).
The better performance of jfuzzylite in these two Takagi-
Sugeno benchmarks is thanks to the optimization performed
by the JIT compiler in Java, something that we confirmed by
performing additional experiments disabling the JIT compiler.
Specifically, it is easier for the JIT compiler to optimize
the Takagi-Sugeno benchmarks because their defuzzification
process translates into a weighted average of a few values
(see WeightedAverage::defuzzify); whereas the defuzzification
process of the Mamdani benchmarks is harder to optimize
because it translates into a weighted average of r = 100
values, where r is the resolution of the centroid defuzzifier, and
the values are obtained only after evaluating the membership
functions (see Centroid::defuzzify).

TABLE VI: Performance of the libraries on the benchmarks. The values
represent the average computational time (in seconds) required by each library
to evaluate the benchmarks. Smaller values indicate better performance. Empty
values represent benchmarks not supported by the library. The common mean
is computed over the underlined benchmarks, which are common across
libraries; whereas the overall mean is computed over the available benchmarks
in each library, ignoring the missing values (if any).

benchmark cfis matlab fuzzylite jfuzzylite jfuzzylogic octave

Bell 0.116 0.162 0.595 1.114 1.628 955.379
Binary 0.170 0.193 2.501

Concave 0.199 0.269 2.486
Constant 0.006 0.007 0.023 0.012 0.073 388.558

Cosine 0.396 1.071 1.712
Discrete 0.383 0.421 1.548
Function 4.039 9.310 2.407
Gaussian 0.116 0.163 0.329 0.841 1.174 941.648

GaussianP. 0.116 0.160 0.378 0.858 1.202 1324.361
Linear 0.005 0.007 0.025 0.013 0.067 387.853

PiShape 0.117 0.161 0.229 0.295 2.206 1094.229
Ramp 0.205 0.281 2.392

Rectangle 0.181 0.219 2.207
Sigmoid 0.116 0.161 0.313 0.891 1.245 942.106

SigmoidD. 0.117 0.167 0.445 1.562 2.400 1214.323
SigmoidP. 0.116 0.158 0.425 1.547 2.204 1111.997

Spike 0.321 0.836 2.198
Trapezoid 0.117 0.166 0.208 0.261 0.294 1179.037

Triangle 0.116 0.166 0.200 0.250 0.312 1202.354
ZSShape 0.116 0.165 0.203 0.279 2.204 1074.589

common mean 0.092 0.129 0.279 0.645 0.933 948.402
overall mean 0.098 0.137 0.463 1.026 1.623 984.703

rank 1st 2nd 3rd 4th 5th 6th

2) jfuzzylite vs jfuzzylogic: The jfuzzylite library is faster
than jfuzzylogic by 0.933 ÷ 0.645 = 1.5x. We expected
jfuzzylite to be faster partly because of the simpler class
structure, hierarchy, and organization, which helps to optimize
for performance; but also because, after reviewing the source
code of jfuzzylogic, we identified the following characteristics
that slows it down. Defuzzification: for Mamdani-based FLCs,
the cost of the defuzzification process in jfuzzylogic is higher
because (a) the fuzzy output is discretized and stored into
an array (see RuleActivationMethod::imply), (b) the array is
initialized to zero (see DefuzzifierContinuous::reset), and (c) the
array is iterated again to compute the centroid (see Defuzzi-
fierCenterOfGravity::defuzzify) . Differently, the defuzzification
process in jfuzzylite computes the centroid of the fuzzy output
at the same time it is being discretized (see Centroid::defuzzify),
thereby avoiding the memory allocation of the array and the
storage of its values. Reference values: in jfuzzylogic, every
linguistic variable (input and output) maintains and updates
a copy of the values of the other variables in the engine in
order to use them if needed (see Variable::needEstimateUniverse),
but this mechanism is only useful for the output variables
that contain Function and Linear terms. Differently, ref-
erence values in jfuzzylite are only maintained and updated
in Function terms (see Function::membership), as Linear

terms have direct access to the reference values by index (see
Linear::membership). Discrete terms: a discrete term with reso-
lution r is defined by a set of n pairs (xi, yi) sorted ascending
by xi. Thus, to compute the membership function µ(v) of a
discrete term it is necessary to (1) find the xi value closest

Copyright c© 2018 FuzzyLite Limited. All rights reserved.

https://github.com/fuzzylite/jfuzzylite/blob/jfuzzylite-6.x/jfuzzylite/src/main/java/com/fuzzylite/defuzzifier/WeightedAverage.java#L83
https://github.com/fuzzylite/jfuzzylite/blob/jfuzzylite-6.x/jfuzzylite/src/main/java/com/fuzzylite/defuzzifier/Centroid.java#L66
https://github.com/fuzzylite/performance/tree/master/library/jFuzzyLogic/src/net/sourceforge/jFuzzyLogic/ruleActivationMethod/RuleActivationMethod.java#L98
https://github.com/fuzzylite/performance/tree/master/library/jFuzzyLogic/src/net/sourceforge/jFuzzyLogic/defuzzifier/DefuzzifierContinuous.java#L138
https://github.com/fuzzylite/performance/tree/master/library/jFuzzyLogic/src/net/sourceforge/jFuzzyLogic/defuzzifier/DefuzzifierCenterOfGravity.java#L21
https://github.com/fuzzylite/performance/tree/master/library/jFuzzyLogic/src/net/sourceforge/jFuzzyLogic/defuzzifier/DefuzzifierCenterOfGravity.java#L21
https://github.com/fuzzylite/jfuzzylite/blob/jfuzzylite-6.x/jfuzzylite/src/main/java/com/fuzzylite/defuzzifier/Centroid.java#L66
https://github.com/fuzzylite/performance/tree/master/library/jFuzzyLogic/src/net/sourceforge/jFuzzyLogic/rule/Variable.java#L258
https://github.com/fuzzylite/fuzzylite/blob/fuzzylite-6.x/fuzzylite/src/term/Function.cpp#L561
https://github.com/fuzzylite/fuzzylite/blob/fuzzylite-6.x/fuzzylite/src/term/Linear.cpp#L128

11

to v, (2) identify xi−1 and xi+1, and (3) linearly interpolate
the result between µ(xi−1) and µ(xi+1). In jfuzzylogic, the
first step utilizes linear search (see MembershipFunctionPiece-
WiseLinear::membership), which has a computational cost O(n);
whereas jfuzzylite utilizes the more efficient binary search (see
Discrete::membership), which has a logarithmic computational
cost O(log n).

3) fuzzylite vs cfis: The fuzzylite library is slower than cfis
by 0.279 ÷ 0.092 = 3.0x. It was not surprising to find that
cfis outperforms fuzzylite given the following key differences.
Programming paradigm: fuzzylite is programmed following
the object-oriented paradigm, where the FLC and its operation
are structured into a set of classes and methods; whereas the
cfis library is programmed following the procedural paradigm,
where the FLC and its operation are structured into subroutines
(defined as static methods) and a few primitive structures
that group related variables. Specifically, fuzzylite dynamically
allocates objects corresponding to linguistic terms, variables,
rules, fuzzy logic operators, and defuzzifiers; whereas cfis
utilizes pointers to static methods for the most part (see meth-
ods fisComputeInputMfValue, fisFinalOutputMf2, and fisEvaluate).
As such, fuzzylite requires not only more memory but also
predominantly uses the (slower) heap memory, whereas cfis
requires less memory and predominantly uses the (faster) stack
memory. Besides memory allocation, fuzzylite is more com-
putationally expensive due to the use of inheritance, templates,
exceptions, and the C++ STL, although these characteristics
also make fuzzylite importantly more flexible. Rule activa-
tion: fuzzylite represents the antecedents of each rule in a
binary expression tree, whereas cfis represents them in an
index-based array whose length and order correspond to the
input variables in the engine. As such, the evaluation of the
expression tree in fuzzylite is more computationally expensive
than the array iteration in cfis, but again fuzzylite provides
more flexibility. Specifically, in a single rule, fuzzylite al-
lows to combine conjunction and disjunction operators, group
propositions in antecedents ad hoc, use multiple hedges, and
even use output variables in the antecedents; whereas cfis
constrains the antecedents of each rule to input variables,
which can be joined exclusively by either conjunction or
disjunction, with no support for ad hoc groups, and only a
limited options of hedges.

4) fuzzylite vs matlab: The fuzzylite library is slower than
matlab by 0.279 ÷ 0.129 = 2.2x. From all the libraries, we
had the most uncertainty on what to expect against matlab.
On the one hand, fuzzylite runs natively and the source
code has been thoroughly optimized. On the other hand,
while matlab interprets the source code, it also has the JIT
compiler, and it is popular for its efficient operation on large
matrices. After disabling the JIT compiler with the command
feature accel off, matlab’s performance deteriorated,
but was still better than fuzzylite. Therefore, it is not only the
JIT compiler that favors matlab’s performance, but there are
other features that makes it faster than fuzzylite. After profiling
the benchmarks in matlab, we found that matlab utilizes a pre-
compiled binary file (namely evalfismex.mexmaci64)
that links matlab to the cfis library. As such, matlab interprets
the code to run the benchmarks, but links to the cfis library

directly to operate the FLCs. Hence, the linkage between
matlab and cfis explains why matlab is slower than cfis by
0.129÷ 0.092 = 1.4x, but faster than fuzzylite by 2.2x.

5) fuzzylite vs octave: The fuzzylite library is faster than
octave by 948.402÷ 0.279 = 3399.3x. We expected fuzzylite
to be faster because, besides being compiled into a native
executable, FLCs in octave are interpreted, its JIT compiler
is still in experimental stage (and not readily available for
use), and octave does not have pre-compiled binaries to link
against (unlike matlab). While the difference in performance
is very large, we can expect the performance of octave to
improve once its JIT compiler leaves the experimental stage
and is ready to be used.

6) Current and previous versions of fuzzylite and jfuzzylite:
Using the same design of experiments described in Section V,
we evaluated the performance of the previous versions of
fuzzylite (5.1) and jfuzzylite (5.1). The overall performance
of the current versions is better than their previous versions,
as shown in Figure VII. According to the one-sided pairwise
Wilcoxon rank sum test (at α = 0.05 with Holm correction),
the difference in performance between each pair of libraries
is statistically significant, except between fuzzylite 5 and
jfuzzylite 6.

The current version of fuzzylite is faster than its pre-
vious version by 0.646 ÷ 0.281 = 2.3x, and the current
version of jfuzzylite is faster than its previous version by
1.268 ÷ 0.612 = 2.1x. The changes responsible for these
performance improvements are the following. Takagi-Sugeno:
the weighted defuzzifiers in previous versions computed the
weighted sum and weighted average utilizing instances of
TNorm and SNorm for the products and sums, respectively
(e.g., see WeightedAverageCustom::defuzzify). However, the cur-
rent versions have simplified the weighted defuzzifiers to
have their traditional operation using primitive sums and
products, thereby reducing their computational cost (e.g., see
WeightedAverage::defuzzify). Membership functions: the com-
putation of the membership functions for GaussianProduct,
PiShape, SigmoidProduct, ZShape, and Discrete were
optimized; especially the Discrete term, which now uti-
lizes the more efficient binary search instead of linear
search (see Discrete::membership). Downcasting: additional
logic was included to guarantee safe typecasting of objects
(down the inheritance hierarchy of classes) without using
the costly dynamic_cast in C++ [42] and instanceof
in Java [43]. In particular, the changes were made to the
evaluation of the antecedents of the rules (e.g., see An-
tecedent::activationDegree), which requires to downcast each
variable to determine if it is an input or an output variable, and
downcast each node in the binary expression tree to determine
if it is an operator (i.e., conjunction or disjunction) or a
proposition (e.g., “direction is left”). Inlined methods: (C++
only) the overhead of method calls was reduced by declaring
inline all the methods for tolerance-based comparison of
floating-point values, amongst other methods (see the Operation
class). Memory allocation: (C++ only) the heap allocation of
Activated terms in the fuzzy output was replaced for stack
allocation (see the definition of the Aggregated term). Logging:
(Java only) in the current version, checks are made whether

Copyright c© 2018 FuzzyLite Limited. All rights reserved.

https://github.com/fuzzylite/performance/tree/master/library/jFuzzyLogic/src/net/sourceforge/jFuzzyLogic/membership/MembershipFunctionPieceWiseLinear.java#L120
https://github.com/fuzzylite/performance/tree/master/library/jFuzzyLogic/src/net/sourceforge/jFuzzyLogic/membership/MembershipFunctionPieceWiseLinear.java#L120
https://github.com/fuzzylite/jfuzzylite/blob/jfuzzylite-6.x/jfuzzylite/src/main/java/com/fuzzylite/term/Discrete.java#L336
https://github.com/fuzzylite/performance/tree/master/library/cfis/fis.c#L1538
https://github.com/fuzzylite/performance/tree/master/library/cfis/fis.c#L1686
https://github.com/fuzzylite/performance/tree/master/library/cfis/fis.c#L1758
https://github.com/fuzzylite/jfuzzylite/blob/jfuzzylite-6.x/jfuzzylite/src/main/java/com/fuzzylite/defuzzifier/WeightedAverageCustom.java#L91
https://github.com/fuzzylite/jfuzzylite/blob/jfuzzylite-6.x/jfuzzylite/src/main/java/com/fuzzylite/defuzzifier/WeightedAverage.java#L81
https://github.com/fuzzylite/jfuzzylite/blob/jfuzzylite-6.x/jfuzzylite/src/main/java/com/fuzzylite/term/Discrete.java#L336
https://github.com/fuzzylite/jfuzzylite/blob/jfuzzylite-6.x/jfuzzylite/src/main/java/com/fuzzylite/rule/Antecedent.java#L159
https://github.com/fuzzylite/jfuzzylite/blob/jfuzzylite-6.x/jfuzzylite/src/main/java/com/fuzzylite/rule/Antecedent.java#L159
https://github.com/fuzzylite/fuzzylite/blob/fuzzylite-6.x/fuzzylite/fl/Operation.h
https://github.com/fuzzylite/fuzzylite/blob/fuzzylite-6.x/fuzzylite/fl/term/Aggregated.h#L49

12

to log or debug information; whereas in the previous version
the responsibility was delegated to the logger.

TABLE VII: Performance of the current and previous versions of fuzzylite and
jfuzzylite on the benchmarks. The values represent the average computational
time (in seconds) required by each library to evaluate the benchmarks. Smaller
values indicate better performance. Empty values represent benchmarks not
supported by the library. The common mean is computed over the bench-
marks available in all libraries. The overall mean is computed over all the
benchmarks in each library.

benchmark fuzzylite 6 fuzzylite 5 jfuzzylite 6 jfuzzylite 5

Bell 0.595 0.608 1.114 1.670
Binary 0.170 0.193

Concave 0.199 0.277 0.269 0.780
Constant 0.023 0.037 0.012 0.520

Cosine 0.396 0.475 1.071 1.639
Discrete 0.383 5.660 0.421 2.722
Function 4.039 3.940 9.310 10.436
Gaussian 0.329 0.348 0.841 1.349

GaussianP. 0.378 0.641 0.858 2.060
Linear 0.025 0.039 0.013 0.526

PiShape 0.229 0.399 0.295 0.809
Ramp 0.205 0.365 0.281 0.790

Rectangle 0.181 0.259 0.219 0.738
Sigmoid 0.313 0.321 0.891 1.410

SigmoidD. 0.445 0.454 1.562 2.081
SigmoidP. 0.425 0.449 1.547 2.066

Spike 0.321 0.334 0.836 1.349
Trapezoid 0.208 0.327 0.261 0.770

Triangle 0.200 0.328 0.250 0.763
ZSShape 0.203 0.314 0.279 0.780

common mean 0.479 0.820 1.070 1.750
overall mean 0.463 0.820 1.026 1.750

rank 1st 2nd 3rd 4th

B. Ranking

The ranking of the benchmarks according to the average
computational performance is presented in Table VIII, where
the benchmarks in each library have been grouped into four
clusters. The average computational performance is presented
in Figure 8, providing more details about the ranking.

The goal of ranking and grouping the benchmarks according
to their computational performance is to provide guidelines
to design more efficient FLCs. Specifically, considering that
the performance of each benchmark is intrinsically related
to the linguistic terms used therein, these guidelines provide
useful information on the tradeoff between the computational
complexity and the performance of the underlying membership
functions. Besides the differences in performance identified
in Section VI-A, the rankings show further differences be-
tween the libraries regarding the computation of membership
functions and mathematic functions, and also regarding the
leverage of certain features inherent to the respective program-
ming languages. The next sections describe the ranking of
the benchmarks in each library and the main characteristics
influencing the ranking.

1) fuzzylite and jfuzzylite: The ranking of the benchmarks
in fuzzylite and jfuzzylite is similar. The first group con-
sists of the membership functions for Takagi-Sugeno con-
trollers, namely Constant and Linear, which are respec-
tively computed from multiple constant values and from

TABLE VIII: Ranking of the benchmarks according to computational perfor-
mance (from better to worse). In each library, the benchmarks are grouped
into four clusters according to the k-means algorithm [44].

fuzzylite jfuzzylite jfuzzylogic octave matlab cfis

1 Constant Constant Linear Linear Constant Linear
2 Linear Linear Constant Constant Linear Constant
3 Binary Binary Trapezoid Gaussian SigmoidP. Bell
4 Rectangle Rectangle Triangle Sigmoid GaussianP. Gaussian
5 Concave Triangle Gaussian Bell PiShape Triangle
6 Triangle Trapezoid GaussianP. ZSShape Sigmoid ZSShape
7 ZSShape Concave Sigmoid PiShape Bell GaussianP.
8 Ramp ZSShape Discrete SigmoidP. Gaussian Sigmoid
9 Trapezoid Ramp Bell Trapezoid ZSShape SigmoidP.

10 PiShape PiShape Cosine Triangle Triangle Trapezoid
11 Sigmoid Discrete Spike SigmoidD. Trapezoid PiShape
12 Spike Spike ZSShape GaussianP. SigmoidD. SigmoidD.
13 Gaussian Gaussian SigmoidP.
14 GaussianP. GaussianP. PiShape
15 Discrete Sigmoid Rectangle
16 Cosine Cosine Ramp
17 SigmoidP. Bell SigmoidD.
18 SigmoidD. SigmoidP. Function
19 Bell SigmoidD. Concave
20 Function Function Binary

multiple weighted sums of values. The second group consists
of the membership functions computed with arithmetic op-
erators (namely +,−,×, and ÷, in Binary, Concave, Ramp,
Rectangle, Trapezoid, and Triangle) and the exponentia-
tion function (namely pow, in PiShape, ZShape and SShape).
The third group consists of the membership functions com-
puted with the exponentiation function of Euler’s number
(namely exp, in Gaussian, GaussianProduct, Sigmoid,
SigmoidDifference, SigmoidProduct, and Spike); with
the trigonometric cosine function (namely cos, in Cosine);
and with both exponentiation function and absolute function
(namely pow and abs, respectively, in Bell). The member-
ship function for Discrete terms in jfuzzylite is located in
the second group limiting the third group, whereas in fuzzylite
is well in the third group. Lastly, the fourth group contains
only the custom Function, which is computed by recursively
traversing a binary expression tree. Overall, the computational
cost of the benchmarks naturally increases with the complexity
of the membership functions.

2) jfuzzylogic: The ranking in jfuzzylogic is somewhat
different from fuzzylite and jfuzzylite. The first group contains
the Constant and Linear membership functions, which are
the most computationally efficient across libraries. However,
the first group also contains the Trapezoid and Triangle,
which consist of arithmetic operations, and are ranked in the
second group of fuzzylite and jfuzzylite. The second group
contains the remaining membership functions supported by
jfuzzylogic, namely Bell, Cosine, Discrete, Gaussian,
GaussianProduct, and Sigmoid, whose membership func-
tions are computed utilizing arithmetic operations, exponen-
tiation functions, trigonometric functions, and linear search
(accordingly). Lastly, the third and fourth groups contain the
discretized membership functions of the functions that are not
readily supported in jfuzzylogic.

Overall, computational cost increases with complexity, but
the performance of the discretized membership functions is not
consistent. The Discrete membership function (ranking 8th)

Copyright c© 2018 FuzzyLite Limited. All rights reserved.

https://github.com/fuzzylite/jfuzzylite/blob/jfuzzylite-6.x/jfuzzylite/src/main/java/com/fuzzylite/term/Constant.java#L78
https://github.com/fuzzylite/jfuzzylite/blob/jfuzzylite-6.x/jfuzzylite/src/main/java/com/fuzzylite/term/Linear.java#L126
https://github.com/fuzzylite/jfuzzylite/blob/jfuzzylite-6.x/jfuzzylite/src/main/java/com/fuzzylite/term/Binary.java#L122
https://github.com/fuzzylite/jfuzzylite/blob/jfuzzylite-6.x/jfuzzylite/src/main/java/com/fuzzylite/term/Concave.java#L107
https://github.com/fuzzylite/jfuzzylite/blob/jfuzzylite-6.x/jfuzzylite/src/main/java/com/fuzzylite/term/Ramp.java#L132
https://github.com/fuzzylite/jfuzzylite/blob/jfuzzylite-6.x/jfuzzylite/src/main/java/com/fuzzylite/term/Rectangle.java#L105
https://github.com/fuzzylite/jfuzzylite/blob/jfuzzylite-6.x/jfuzzylite/src/main/java/com/fuzzylite/term/Trapezoid.java#L121
https://github.com/fuzzylite/jfuzzylite/blob/jfuzzylite-6.x/jfuzzylite/src/main/java/com/fuzzylite/term/Triangle.java#L112
https://github.com/fuzzylite/jfuzzylite/blob/jfuzzylite-6.x/jfuzzylite/src/main/java/com/fuzzylite/term/PiShape.java#L116
https://github.com/fuzzylite/jfuzzylite/blob/jfuzzylite-6.x/jfuzzylite/src/main/java/com/fuzzylite/term/ZShape.java#L104
https://github.com/fuzzylite/jfuzzylite/blob/jfuzzylite-6.x/jfuzzylite/src/main/java/com/fuzzylite/term/SShape.java#L104
https://github.com/fuzzylite/jfuzzylite/blob/jfuzzylite-6.x/jfuzzylite/src/main/java/com/fuzzylite/term/Gaussian.java#L104
https://github.com/fuzzylite/jfuzzylite/blob/jfuzzylite-6.x/jfuzzylite/src/main/java/com/fuzzylite/term/GaussianProduct.java#L121
https://github.com/fuzzylite/jfuzzylite/blob/jfuzzylite-6.x/jfuzzylite/src/main/java/com/fuzzylite/term/Sigmoid.java#L120
https://github.com/fuzzylite/jfuzzylite/blob/jfuzzylite-6.x/jfuzzylite/src/main/java/com/fuzzylite/term/SigmoidDifference.java#L116
https://github.com/fuzzylite/jfuzzylite/blob/jfuzzylite-6.x/jfuzzylite/src/main/java/com/fuzzylite/term/SigmoidProduct.java#L115
https://github.com/fuzzylite/jfuzzylite/blob/jfuzzylite-6.x/jfuzzylite/src/main/java/com/fuzzylite/term/Spike.java#L104
https://github.com/fuzzylite/jfuzzylite/blob/jfuzzylite-6.x/jfuzzylite/src/main/java/com/fuzzylite/term/Cosine.java#L106
https://github.com/fuzzylite/jfuzzylite/blob/jfuzzylite-6.x/jfuzzylite/src/main/java/com/fuzzylite/term/Bell.java#L107
https://github.com/fuzzylite/jfuzzylite/blob/jfuzzylite-6.x/jfuzzylite/src/main/java/com/fuzzylite/term/Discrete.java#L312
https://github.com/fuzzylite/jfuzzylite/blob/jfuzzylite-6.x/jfuzzylite/src/main/java/com/fuzzylite/term/Function.java#L556

13

Fig. 8: Ranking of the benchmarks in each library according to computational
performance (from better to worse). The horizontal axis presents a different
scale in each library.

(a) fuzzylite

20
19
18
17
16
15
14
13
12
11
10

9
8
7
6
5
4
3
2
1

x4Function
Bell

SigmoidD.
SigmoidP.

Cosine
Discrete

GaussianP.
Gaussian

Spike
Sigmoid
PiShape

Trapezoid
Ramp

ZSShape
Triangle

Concave
Rectangle

Binary
Linear

Constant

0 250 500 750 1000
Time (ms)

(b) jfuzzylite

20
19
18
17
16
15
14
13
12
11
10

9
8
7
6
5
4
3
2
1

x4Function
SigmoidD.
SigmoidP.

Bell
Cosine

Sigmoid
GaussianP.

Gaussian
Spike

Discrete
PiShape

Ramp
ZSShape
Concave

Trapezoid
Triangle

Rectangle
Binary
Linear

Constant

0 500 1000 1500 2000
Time (ms)

(c) jfuzzylogic

20
19
18
17
16
15
14
13
12
11
10

9
8
7
6
5
4
3
2
1

Binary
Concave
Function

SigmoidD.
Ramp

Rectangle
PiShape

SigmoidP.
ZSShape

Spike
Cosine

Bell
Discrete
Sigmoid

GaussianP.
Gaussian

Triangle
Trapezoid
Constant

Linear

0 500 1000 1500 2000 2500
Time (ms)

(d) octave

12
11
10

9
8
7
6
5
4
3
2
1

GaussianP.

SigmoidD.

Triangle

Trapezoid

SigmoidP.

PiShape

ZSShape

Bell

Sigmoid

Gaussian

Constant

Linear

0e+00 5e+05 1e+06
Time (ms)

(e) matlab

12
11
10

9
8
7
6
5
4
3
2
1

SigmoidD.

Trapezoid

Triangle

ZSShape

Gaussian

Bell

Sigmoid

PiShape

GaussianP.

SigmoidP.

Linear

Constant

0 50 100 150
Time (ms)

(f) cfis

12
11
10

9
8
7
6
5
4
3
2
1

SigmoidD.

PiShape

Trapezoid

SigmoidP.

Sigmoid

GaussianP.

ZSShape

Triangle

Gaussian

Bell

Constant

Linear

0 40 80 120
Time (ms)

and all the discretized membership functions (ranking 11th or
worse) should have the same performance, but instead there are
important differences between them, hence classifying them
into two clusters. Further research on jfuzzylogic could explore
these inconsistencies in performance.

3) octave: The ranking in octave is more consistent
than jfuzzylogic on the computational cost of the differ-
ent membership functions. The first group contains the
Constant and Linear benchmarks, like the other libraries.
The second group consists of terms whose membership
functions perform only one exponentiation, namely Bell,
Gaussian, and Sigmoid. The third group consists of terms
whose membership functions are more complex: SShape,
ZShape and PiShape each utilizes an anonymous func-
tion; SigmoidProduct utilizes the exponentiation function
twice; Trapezoid and Triangle each utilizes the maxi-
mum function (once) and the minimum function (twice); and

the SigmoidDifference utilizes the exponentiation func-
tion (twice), the maximum function (once), and minimum
function (twice). Lastly, the fourth group consists of the
GaussianProduct, whose membership function is computed
utilizing two anonymous functions (once each) and the ex-
ponentiation function (twice). Overall, the differences in the
rankings are mostly affected by the number of functions uti-
lized, and particularly by the number of anonymous functions,
which is reported to negatively impact the performance of
octave [45, p. 201].

4) cfis and matlab: The ranking in cfis is different from
the ranking in matlab, with a few exceptions. Both libraries
share the following terms in the same groups: Constant and
Linear terms in the first group, Gaussian in the third
group, and Trapezoid and SigmoidDifference in the
fourth group. The remaining terms are grouped differently.
To explain the differences, we looked into Figure 8, and we
found that, excluding Constant and Linear, the differences
in performance between the terms in each library are neg-
ligible. Such negligible differences are unexpected because
they indicate that the evaluation of a simple function (like
minimum and maximum) has a similar computational cost
to the evaluation of more complex functions (like trigono-
metric and exponentiation functions). While unexpected, the
negligible differences between the terms are responsible for
the large differences in the rankings. Specifically, by having
such a similar performance, not only the terms have similar
probabilities to occupy any given position, but also small
variations lead to larger changes in the ranking. Besides the
differences in the rankings, Figure 8 shows that the compu-
tational performance of matlab compared to cfis is worse by
more than 30 milliseconds, which suggests that this is the
computational cost for matlab to link to the cfis library (see
Section VI-A4). Overall, instead of the four clusters used to
group and rank cfis and matlab, only two groups would suffice:
the first group containing the Constant and Linear terms,
and the second group containing the remaining terms. Further
research on cfis and matlab could explore the reasons behind
such negligible differences in performance between the terms.

C. Accuracy
The accuracy of the libraries on the benchmarks is pre-

sented in Table IX. The libraries produce the same results
in the Takagi-Sugeno benchmarks. However, in the Mamdani
benchmarks, the libraries produce different results mainly due
to numerical integration methods and rounding errors.

The most accurate libraries are fuzzylite and jfuzzylite
having a common output error of δ = ±0.006%, closely
followed by octave at δ = ±0.008%. The matlab and cfis
libraries are less accurate at δ = ±0.055%, and jfuzzylogic
is the least accurate at δ = ±1.562%. The differences on
the accuracy between each pair of libraries are statistically
significant according to the one-sided pairwise Wilcoxon rank
sum test (at α = 0.05 with Holm correction). While the
differences are statistically significant, their importance should
be judged within the application context. In the next sections,
we discuss some of the features that explain the differences in
accuracy between fuzzylite and the other libraries.

Copyright c© 2018 FuzzyLite Limited. All rights reserved.

14

TABLE IX: Accuracy of the libraries on the benchmarks. The values represent
the RMSE (multiplied by 104) between the output values obtained with
each library (using defuzzifiers with resolution r = 100) and a better
approximation of the true output values (using fuzzylite and defuzzifiers
with resolution r = 100 000). Smaller values indicate more accuracy. Empty
values represent benchmarks not supported by the library. The common mean
is computed over the underlined benchmarks, which are common across
libraries; whereas the overall mean is computed over the available benchmarks
in each library, ignoring the missing values (if any). The common and overall
errors are presented as percentages of their respective (unscaled) error means
relative to the range of the variable.

benchmark
fuzzylite
jfuzzylite

octave
matlab

cfis
jfuzzylogic

Bell 0.406 0.411 3.524 76.248
Binary 15.498 55.498

Concave 0.062 151.037
Constant 0.000 0.000 0.000 0.000

Cosine 0.760 36.656
Discrete 1.721 43.482
Function 1.721 43.482
Gaussian 0.218 0.245 7.713 147.264

GaussianProduct 0.218 0.245 7.713 147.264
Linear 0.000 0.000 0.000 0.000

PiShape 0.710 0.686 0.686 35.275
Ramp 0.562 135.952

Rectangle 15.498 55.498
Sigmoid 0.237 0.265 22.111 902.762

SigmoidDifference 0.430 0.435 2.412 41.983
SigmoidProduct 0.430 0.435 2.412 32.438

Spike 0.263 21.121
Trapezoid 2.439 3.278 3.278 47.096

Triangle 1.722 2.322 2.322 43.501
ZSShape 0.148 0.177 23.084 116.082

common mean 0.630 0.800 5.453 156.235
common error (%) ±0.006 ±0.008 ±0.055 ±1.562

overall mean 2.152 0.708 6.271 106.632
overall error (%) ±0.022 ±0.007 ±0.063 ±1.066

rank 1st 2nd 3rd 4th

1) Numerical integration methods: The centroid defuzzi-
fiers in the libraries approximate the integral over the fuzzy
output values by using different types of Riemann sums.
Specifically, fuzzylite and jfuzzylite utilize the midpoint sum,
octave utilizes the trapezoidal sum, and cfis, matlab and
jfuzzylogic utilize the left sum. Differential calculus shows
that the midpoint sum is definitely more accurate than the left
(or right) Riemann sums [46, p.907], and can be more accurate
than the trapezoidal sum [47, p.529] under certain conditions.
The preference of the midpoint sum over the trapezoidal sum
can also be found in other works [48]–[51], and we further
support such a preference with the experimental evidence of
our case study.

2) Rounding errors: Besides integration methods, rounding
errors are another factor that affect the accuracy of the
libraries, in particular that of jfuzzylogic. Rounding errors
are inherent to digital computing because it is not possible
to represent every real number in a finite number of bits [52].
Hence, the programming languages on which the libraries are
built, handle the real numbers as approximations using the
IEEE Standard for Floating-Point Arithmetic (IEEE-754) with
double precision (64 bits). The errors on these approximations
are unavoidable, and performing arithmetic operations on these
approximations further increases the error [52]. However, in

jfuzzylogic, the error is larger because the error accumulates at
each iteration of the integration method, whereas in the other
libraries the error remains constant. Specifically, considering
the integration algorithms in Figure 9, which use Riemann
sums of the form

∑
f(x)dx to approximate the integral

over the fuzzy output values, the error of variable x grows
in jfuzzylogic because it is incremented at each iteration
using x+=dx; whereas the error remains constant in FuzzyLite
because it is computed independently at each iteration using
x=minimum+(i+0.5)*dx. Experimentally, the difference between
the two approaches is analogous to the cases of computing the
multiplication 0.1 × 8 = 0.8 (FuzzyLite) and the sum 0.1 +
0.1+0.1+0.1+0.1+0.1+0.1+0.1 = 0.7999999999999999
(jfuzzylogic) using any programming language compliant with
the IEEE-754.

//Common variable
final double dx = (maximum - minimum) / resolution;

//jfuzzylogic: DefuzzifierCenterOfGravity.java
public double defuzzify() {

double sum = 0, weightedSum = 0;
for (int i = 0; i < values.length; i++, x += dx) {

sum += values[i];
weightedSum += x * values[i];

}
return weightedSum / sum;

}

//jfuzzylite: Centroid.java
public double defuzzify(Term term) {

double sum = 0, weightedSum = 0;
double x, y;
for (int i = 0; i < resolution; ++i) {

x = minimum + (i + 0.5) * dx;
y = term.membership(x);
weightedSum += y * x;
sum += y;

}
return weightedSum / sum;

}

Fig. 9: Integration methods in jfuzzylogic and jfuzzylite (adapted to our case
study).

3) Membership functions: Lastly, we explored the source
code of the common membership functions across the libraries
in order to determine whether implementation differences
could be affecting the results. The differences are indicated
in Table X and briefly detailed next, but we found that such
differences only affect special cases and do not have any effect
on our benchmarks. In all membership functions, FuzzyLite
feature a multiplier to change the height of the function,
but its value is set to 1.0 for all benchmarks, hence not
affecting the results. Bell: cfis truncates the function when the
slope is negative, whereas the other libraries handle negative
slopes. Sigmoid Difference: octave enforces boundaries for
f(x) ∈ [0.0, 1.0], and jfuzzylogic enforces f(x) ≥ 0.0;
whereas fuzzylite and cfis do not enforce any boundaries.
Trapezoid and Triangle: cfis and octave enforces boundaries
for f(x) ∈ [0.0, 1.0], whereas fuzzylite and jfuzzylogic do not.

D. Overall quality
The overall quality of the libraries is rated according to their

performance, accuracy, features, and documentation. The per-
formance and accuracy are rated according to the results ob-
tained in Sections VI-A and VI-C, respectively. The features

Copyright c© 2018 FuzzyLite Limited. All rights reserved.

15

TABLE X: Differences in the implementation of the common membership
functions across libraries. In each row, different colors mean different imple-
mentations, and equivalent colors mean equivalent implementations.

membership function
fuzzylite
jfuzzylite

jfuzzylogic
matlab

cfis
octave

Bell
Gaussian

Gaussian Product
Sigmoid

Sigmoid Difference
Trapezoid

Triangle

are rated according to the following categories in Table XI,
namely: controller types, linguistic terms, activation methods,
T-norms, S-norms, defuzzifiers, linguistic hedges, importers,
and exporters. The documentation is rated according to the
proportion of documented source code in the libraries as
shown in Table XII.

TABLE XI: Proportion of features readily available in the libraries. The
proportions in each category are computed as the ratio between the number of
components available in the library and the maximum number of components
available in any library.

category
fuzzylite
jfuzzylite

octave jfuzzylogic
matlab

cfis

controllers 3/3 = 1.00 2/3 = 0.67 2/3 = 0.67 2/3 = 0.67
terms 21/21 = 1.00 14/21 = 0.67 14/21 = 0.67 14/21 = 0.67

activation 7/7 = 1.00 1/7 = 0.14 1/7 = 0.14 1/7 = 0.14
t-norms 8/8 = 1.00 7/8 = 0.88 6/8 = 0.75 3/8 = 0.38
s-norms 8/8 = 1.00 7/8 = 0.88 6/8 = 0.75 3/8 = 0.38

defuzzifiers 7/8 = 0.88 8/8 = 1.00 6/8 = 0.75 8/8 = 1.00
hedges 7/7 = 1.00 6/7 = 0.86 1/7 = 0.14 1/7 = 0.14

importers 3/3 = 1.00 1/3 = 0.33 1/3 = 0.33 1/3 = 0.33
exporters 7/7 = 1.00 1/7 = 0.14 2/7 = 0.29 1/7 = 0.14

mean 0.99 0.62 0.50 0.43

rank 1st 2nd 3rd 4th

TABLE XII: Percentage of documented source code computed as 100 ×
comments/code, where comments and code refer to the number of lines
of comments and code in each library, respectively. The number of lines
in each library was computed using the application cloc available at
github.com/AlDanial/cloc/.

library code comments percentage rank

1 octave 4067 5824 143.20% 1st
2 fuzzylite 14 949 8671 58.00% 2nd
3 jfuzzylite 12 692 7344 57.86% 3rd
4 matlab 13 657 3889 28.48% 4th
5 jfuzzylogic 16 718 4129 24.70% 5th
6 cfis 1992 312 15.66% 6th

The overall quality of the libraries is presented in Table XIII.
The libraries that offer the overall best quality are: fuzzylite
and jfuzzylite, followed by octave and matlab, and lastly by
cfis and jfuzzylogic. However, this ranking needs to be seen
for what it is: an overall ranking which does not necessarily
hold for every use case, but provides a general overview of
the libraries.

VII. CONCLUSIONS AND FUTURE WORK

FLCs are mathematical models designed to control systems
by means of fuzzy logic. The seminal ideas of FLCs were

TABLE XIII: Overall quality of the libraries. The libraries are rated in each
category with values between 0 and 5, where higher values indicate better
ratings. The libraries are rated in each category relative to their ranks, i.e.,
the best is rated with 5, the second best with 4, and so on. Values in bold
indicate the best library in the category.

fuzzylite jfuzzylite octave matlab cfis jfuzzylogic

performance 3.0 2.0 0.0 4.0 5.0 1.0
accuracy 5.0 5.0 4.0 3.0 3.0 2.0
features 5.0 5.0 4.0 2.0 2.0 3.0

documentation 4.0 3.0 5.0 2.0 0.0 1.0

mean 4.25 3.75 3.25 2.75 2.50 1.75

rank 1st 2nd 3rd 4th 5th 6th

published more than 50 years ago, and today there are more
than 20 software libraries to design and operate FLCs. Judging
by the number of features, support, availability, and popularity,
we consider the following open-source libraries to be some
of the most relevant today: FuzzyLite, Octave and its Fuzzy
Logic Toolkit, Matlab and its Fuzzy Logic Toolbox, and
jFuzzyLogic. These libraries have in common the modeling
of FLCs, but their implementations differ in performance,
accuracy, number of features, and amount of source code
documentation. Based on these differences, we created a
measure of overall quality to rank the libraries.

The FuzzyLite libraries, introduced here in detail for the first
time, rank best for overall quality because they offer the most
accurate results, the highest number of features, the second
best performance, and the second most documented source
code. Besides these favourable indicators, the FuzzyLite li-
braries also stand out for simplicity, flexibility, compatibil-
ity, and portability thanks to their object-oriented design,
FuzzyLite Language and component factories, importers and
exporters to other libraries, and availability for desktop, mo-
bile, and robotic platforms. However, the FuzzyLite libraries
are missing some features that the other libraries provide,
namely fuzzy data clustering and neuro-fuzzy modeling (by
Matlab and Octave), and algorithms for parameter optimiza-
tion (by jFuzzyLogic). We intend to incorporate these features
in the future.

The next libraries in the ranking of overall quality are
Octave, Matlab, and jFuzzyLogic, respectively. Octave stands
out primarily for having the most documented source code, and
secondarily for the accuracy of its results; but its performance
is rather poor in comparison. Matlab stands out for having
the best performance, but lacks features of FLCs that the
other libraries provide. Lastly, jFuzzyLogic provides the third
highest number of features (more than Matlab), but lags
behind in performance and accuracy. Hence, each library has
its own advantages, disadvantages, and tradeoffs in terms of
performance, accuracy, number of features, and source code
documentation.

The performance of the different configurations of Takagi-
Sugeno and Mamdani-based FLCs across libraries provide
guidelines to design more efficient controllers in each of
them. On the one hand, the Takagi-Sugeno FLCs are the
most computationally efficient configurations across libraries
because their defuzzification process does not approximate the
integral over the fuzzy output values, but instead performs

Copyright c© 2018 FuzzyLite Limited. All rights reserved.

16

a few arithmetic operations. The performance ranking of
Takagi-Sugeno FLCs across libraries coincides with the overall
ranking, except for with one remarkable exception: jfuzzylite
is faster than its homologous fuzzylite thanks to Java’s JIT
compiler. On the other hand, the performance of Mamdani
FLCs is not consistent across libraries because of implementa-
tion differences, characteristics of the programming languages,
and some reasons to be determined. Specifically, the FuzzyLite
libraries present a natural correlation between the complexity
of the membership functions and their computational cost
(and so does jFuzzyLogic, mostly). Octave’s performance is
negatively affected by the number of functions (and especially
anonymous functions) used to compute the membership func-
tions. Lastly, Matlab’s performance does not seem affected
by the complexity of the membership functions, which is
unexpected and its reasons still need to be determined.

Overall, our study provides important information for the
users of the libraries and for the general open-source com-
munity. For the users, we expect they will be able to make
better and more informed decisions when choosing a library
to suit their needs. For the open-source community, we hope
our study will be useful to encourage more contributions in
order to continue improving the quality of the libraries.

Further research could focus on the following suggestions.
• Implement the fuzzy data clustering, neuro-fuzzy model-

ing, and type-II FLCs [53] in the FuzzyLite libraries.
• Design more benchmarks to evaluate different configu-

rations of FLCs including more linguistic variables, lin-
guistic terms, and rules, and also Tsukamoto controllers.

• Evaluate the libraries using additional indicators such as
memory usage, size of binaries, and external dependen-
cies.

• Compare the libraries using software metrics for cou-
pling, cohesion, and complexity; as well as other metrics
that may provide indicators of quality.

• Compare the performance of the fuzzylite library when
compiled using the GNU Compiler Collection (gcc) and
the Microsoft Optimizing Compiler (cl).

• Compare the FuzzyLite Language in terms of perfor-
mance, verbosity, complexity, and flexibility against other
alternatives such as the FCL, FIS, and Fuzzy Markup
Language [54] when importing and exporting FLCs.

• Further investigate the reasons behind Matlab’s best per-
formance, and the few performance inconsistencies in
jFuzzyLogic.

ACKNOWLEDGMENTS

Thank you to the FuzzyLite community, whose feedback
and support has been of great importance to improve the
libraries. Thank you to the European Centre for Soft Comput-
ing, the Foundation for the Advancement of Soft Computing,
Sergio Guadarrama (Google) and Luis Magdalena (Universi-
dad Politécnica de Madrid) for their initial support creating
fuzzylite. Thank you to Pablo Cingolani (jFuzzyLogic), Linda
Markowsky (Octave Fuzzy Logic Toolkit), Roger Jang (Matlab
Fuzzy Logic Toolbox), Edward S. Sazonov (FuzzyEngine),
and their respective collaborators for open sourcing their

libraries. Special thanks to Mengjie Zhang and Mark John-
ston (Victoria University of Wellington, New Zealand); Os-
car Cordón (Universidad de Granada, Spain); Maritza Bra-
cho, José G. Sánchez, Carlos Lameda, Belkys Lameda,
and Rubén Parma (Universidad Centroccidental Lisandro Al-
varado, Venezuela); Yelitza Oviedo, Jorge Rodrı́guez, Ede-
cio Freitez, Luis Alvarado, Jesús Contreras, and Oswaldo
Hernández (Universidad Fermı́n Toro, Venezuela); and Úber
Calderón (Universidad Latina, Costa Rica).

Juan Rada-Vilela received his PhD degree in
2014 from Victoria University of Wellington
(New Zealand). Dr Rada-Vilela also holds
a Master’s degree in Soft Computing and
Intelligent Data Analysis from the European
Centre for Soft Computing (Spain), a Master
of Science in Artificial Intelligence from Uni-
versidad Centroccidental Lisandro Alvarado
(Venezuela), and a Bachelor in Computer
Engineering from Universidad Fermı́n Toro
(Venezuela). His research interests are in Ar-

tificial Intelligence and Software Engineering, specifically in Fuzzy
Logic Control, Swarm Intelligence, Evolutionary Algorithms, Neural
Networks; Software Design and Development, Object-Oriented Pro-
gramming, and SQL/NoSQL Databases. His research output has been
published in seventeen articles in some of the main journals and
conferences in the field of Soft Computing. Dr Rada-Vilela is the
founder and director of FuzzyLite Limited, which is a company based
in Wellington (New Zealand), where he continues to design and develop
the FuzzyLite libraries.

REFERENCES

[1] L. A. Zadeh, “Fuzzy sets,” Information and Control, vol. 8, no. 3, pp.
338–353, 1965.

[2] İ. Özkan and I. B. Türkşen, Uncertainty and Fuzzy Decisions. Springer,
2014, pp. 17–27.

[3] E. Hüllermeier, “Fuzzy methods in machine learning and data mining:
Status and prospects,” Fuzzy Sets and Systems, vol. 156, no. 3, pp. 387–
406, 2005.

[4] C. Kahraman, Fuzzy Multi-Criteria Decision Making: Theory and Ap-
plications with Recent Developments, 1st ed. Springer, 2008.

[5] P. Benavidez, J. Lambert, A. Jaimes, and M. Jamshidi, “Landing
of an ardrone 2.0 quadcopter on a mobile base using fuzzy logic,”
International Journal of Complex Systems – Computing, Sensing and
Control, vol. 1, no. 1-2, pp. 5–25, 2013.

[6] J. P. Rastelli and M. S. Peñas, “Fuzzy logic steering control of au-
tonomous vehicles inside roundabouts,” Applied Soft Computing, vol. 35,
pp. 662–669, 2015.

[7] G. K. Venayagamoorthy, L. L. Grant, and S. Doctor, “Collective robotic
search using hybrid techniques: Fuzzy logic and swarm intelligence
inspired by nature,” Engineering Applications of Artificial Intelligence,
vol. 22, no. 3, pp. 431–441, 2009.

[8] K. Kapitanova, S. H. Son, and K.-D. Kang, “Using fuzzy logic for robust
event detection in wireless sensor networks,” Ad Hoc Networks, vol. 10,
no. 4, pp. 709–722, 2012.

[9] D. Johnson and J. Wiles, “Computer games with intelligence,” in Pro-
ceedings of the 10th IEEE International Conference on Fuzzy Systems,
vol. 3, 2001, pp. 1355–1358.

[10] H. B. Verbruggen, H.-J. Zimmerman, and R. Babŭska, Eds., Fuzzy
Algorithms for Control. International Series in Intelligent Technologies,
1999.

[11] M. Mahfouf, M. Abbod, and D. Linkens, “A survey of fuzzy logic
monitoring and control utilisation in medicine,” Artificial Intelligence
in Medicine, vol. 21, no. 1–3, pp. 27–42, 2001.

[12] Y. Jin and L. Wang, Fuzzy Systems in Bioinformatics and Computational
Biology, 1st ed. Springer, 2009.

Copyright c© 2018 FuzzyLite Limited. All rights reserved.

17

[13] O. N. Jensen, P. Mortensen, O. Vorm, and M. Matthias, “Automation
of matrix-assisted laser desorption/ionization mass spectrometry using
fuzzy logic feedback control.” Analytical Chemistry, vol. 69, no. 9, pp.
1706–1714, 1997.

[14] B. Center and B. P. Verma, “Fuzzy logic for biological and agricultural
systems,” Artificial Intelligence Review, vol. 12, no. 1, pp. 213–225,
1998.

[15] J. Alcalá-Fdez and J. M. Alonso, “A survey of fuzzy systems software:
Taxonomy, current research trends, and prospects,” IEEE Transactions
on Fuzzy Systems, vol. 24, no. 1, pp. 40–56, 2016.

[16] P. Cingolani and J. Alcalá-Fdez, “jFuzzyLogic: a robust and flexible
fuzzy-logic inference system language implementation,” in Proceedings
of the IEEE International Conference on Fuzzy Systems, 2012, pp. 1–8.

[17] ——, “jFuzzyLogic: a java library to design fuzzy logic controllers
according to the standard for fuzzy control programming,” International
Journal of Computational Intelligence Systems, pp. 61–75, 2013.

[18] MathWorks, Fuzzy Logic Toolbox (TM) User’s Guide. Natick, MA:
The MathWorks, Inc., 2016. [Online]. Available: mathworks.com/help/
pdf doc/fuzzy/index.html

[19] L. Markowsky and B. Segee, “The octave fuzzy logic toolkit,” in
Proceedings of the International Workshop on Open-Source Software
for Scientific Computation, 2011, pp. 118–125.

[20] J. Rada-Vilela, “fuzzylite: a fuzzy logic control library in C++,”
in Proceedings of the Open Source Developers Conference, 2013.
[Online]. Available: fuzzylite.com/downloads

[21] S. Sonnenburg, M. L. Braun, C. S. Ong, S. Bengio, L. Bottou,
G. Holmes, Y. LeCun, K.-R. Müller, F. Pereira, C. E. Rasmussen,
G. Rätsch, B. Schölkopf, A. Smola, P. Vincent, J. Weston, and
R. Williamson, “The need for open source software in machine learning,”
Journal of Machine Learning Research, vol. 8, pp. 2443–2466, 2007.

[22] J.-S. Jang, “ANFIS: adaptive-network-based fuzzy inference system,”
IEEE Transactions on Systems, Man and Cybernetics, vol. 23, no. 3,
pp. 665–685, 1993.

[23] M.-S. Yang, “A survey of fuzzy clustering,” Mathematical and Computer
Modelling, vol. 18, no. 11, pp. 1–16, 1993.

[24] E. H. Mamdani and S. Assilian, “An experiment in linguistic synthesis
with a fuzzy logic controller,” International Journal of Man-Machine
Studies, vol. 7, no. 1, pp. 1–13, 1975.

[25] M. Mas, M. Monserrat, J. Torrens, and E. Trillas, “A survey on fuzzy
implication functions,” IEEE Transactions on Fuzzy Systems, vol. 15,
no. 6, pp. 1107–1121, 2007.

[26] T. Takagi and M. Sugeno, “Fuzzy identification of systems and its
applications to modeling and control,” IEEE Transactions on Systems,
Man and Cybernetics, vol. SMC-15, no. 1, pp. 116–132, 1985.

[27] R. Shoureshi and Z. Hu, “Tsukamoto-type neural fuzzy inference
network,” in Proceedings of the American Control Conference, vol. 4,
2000, pp. 2463–2467.

[28] C. C. Lee, “Fuzzy logic in control systems: Fuzzy logic controller —
Parts I and II,” IEEE Transactions on Systems, Man and Cybernetics,
vol. 20, no. 2, pp. 404–435, 1990.

[29] L. A. Zadeh, “The concept of a linguistic variable and its application
to approximate reasoning - Part I,” Information Sciences, vol. 8, no. 3,
pp. 199–249, 1975.

[30] ——, “The concept of a linguistic variable and its application to
approximate reasoning - Part II,” Information Sciences, vol. 8, no. 4,
pp. 301–357, 1975.

[31] W. V. Leekwijck and E. E. Kerre, “Defuzzification: criteria and classi-
fication,” Fuzzy Sets and Systems, vol. 108, no. 2, pp. 159–178, 1999.

[32] B. Stroustrup, The C++ Programming Language, 4th ed. Addison-
Wesley Professional, 2013.

[33] J. Gosling, B. Joy, G. Steele, and G. Bracha, The Java (TM) Language
Specification, 3rd ed. Addison-Wesley Professional, 2005.

[34] G. Booch, Object-Oriented Analysis and Design with Applications,
3rd ed. Addison Wesley Longman Publishing Co., Inc., 2004.

[35] M. Quigley, K. Conley, B. P. Gerkey, J. Faust, T. Foote, J. Leibs,
R. Wheeler, and A. Y. Ng, “Ros: an open-source robot operating system,”
in ICRA Workshop on Open Source Software, 2009.

[36] B. W. Boehm, Clark, Horowitz, Brown, Reifer, Chulani, R. Madachy,
and B. Steece, Software Cost Estimation with Cocomo II with Cdrom,
1st ed. Prentice Hall PTR, 2000.

[37] E. Dijkstra, “Algol 60 translation : An algol 60 translator for the x1
and making a translator for algol 60,” Stichting Mathematisch Centrum,
Tech. Rep., 1961. [Online]. Available: oai.cwi.nl/oai/asset/9251/9251A.
pdf

[38] J. E. Hopcroft, R. Motwani, Rotwani, and J. D. Ullman, Introduction
to Automata Theory, Languages and Computability, 2nd ed. Addison-
Wesley Longman Publishing Co., Inc., 2000.

[39] R Core Team, R: A Language and Environment for Statistical
Computing, R Foundation for Statistical Computing, Vienna, Austria,
2016. [Online]. Available: R-project.org/

[40] H. Wickham, ggplot2: Elegant Graphics for Data Analysis. Springer,
2009. [Online]. Available: ggplot2.org/

[41] E. Gamma, R. Helm, R. Johnson, and J. Vlissides, Design Patterns:
Elements of Reusable Object-oriented Software. Addison-Wesley
Longman Publishing Co., Inc., 1995.

[42] M. Gregoire, Professional C++, 3rd ed. Wrox Press Ltd., 2014.
[43] C. Hunt and B. John, Java Performance, 1st ed. Prentice Hall Press,

2011.
[44] J. MacQueen, “Some methods for classification and analysis of multi-

variate observations,” in Proceedings of the Fifth Berkeley Symposium on
Mathematical Statistics and Probability, Volume 1: Statistics. University
of California Press, 1967, pp. 281–297.

[45] J. W. Weaton, D. Bateman, S. Hauberg, and R. Wehbring,
GNU Octave: Free Your Numbers, 2016. [Online]. Available:
gnu.org/software/octave/octave.pdf

[46] W. H. Press, S. A. Teukolsky, W. T. Vetterling, and B. P. Flannery,
Numerical Recipes: The Art of Scientific Computing, 3rd ed. Cambridge
University Press, 2007.

[47] G. Dahlquist and A. Björck, Numerical Methods in Scientific Computing.
Society for Industrial and Applied Mathematics, 2008, vol. 1.

[48] P. C. Hammer, “The midpoint method of numerical integration,” Math-
ematics Magazine, vol. 31, no. 4, pp. 193–195, 1958.

[49] P. J. Davis and P. Rabinowitz, “Chapter 2 - approximate integration over
a finite interval,” in Methods of Numerical Integration, 2nd ed., P. J.
Davis and P. Rabinowitz, Eds. Academic Press, 1984, pp. 51–198.

[50] M. Ortiz and E. P. Popov, “Accuracy and stability of integration
algorithms for elastoplastic constitutive relations,” International Journal
for Numerical Methods in Engineering, vol. 21, no. 9, pp. 1561–1576,
1985.

[51] J. F. Kraaijevanger, “B-convergence of the implicit midpoint rule and
the trapezoidal rule,” BIT, vol. 25, no. 4, pp. 652–666, Dec. 1985.

[52] D. Goldberg, “What every computer scientist should know about
floating-point arithmetic,” ACM Computing Surveys, vol. 23, no. 1, pp.
5–48, 1991.

[53] N. N. Karnik, J. M. Mendel, and Q. Liang, “Type-2 fuzzy logic systems,”
IEEE Transactions on Fuzzy Systems, vol. 7, no. 6, pp. 643–658, 1999.

[54] G. Acampora and V. Loia, “Fuzzy markup language: A new solution for
transparent intelligent agents,” in IEEE Symposium on Intelligent Agent
(IA), 2011, pp. 1–6.

Copyright c© 2018 FuzzyLite Limited. All rights reserved.

mathworks.com/help/pdf_doc/fuzzy/index.html
mathworks.com/help/pdf_doc/fuzzy/index.html
fuzzylite.com/downloads
oai.cwi.nl/oai/asset/9251/9251A.pdf
oai.cwi.nl/oai/asset/9251/9251A.pdf
R-project.org/
ggplot2.org/
gnu.org/software/octave/octave.pdf

	Introduction
	Related Work
	Matlab
	Octave
	jFuzzyLogic

	Design and Operation of a Fuzzy Logic Controller
	Linguistic Variables
	Rules
	Fuzzification
	Inference
	Defuzzification
	Mamdani and Larsen Controllers
	Takagi-Sugeno Controllers
	Tsukamoto Controllers

	The FuzzyLite Libraries
	Linguistic Variables
	Linguistic Terms
	Rule Blocks
	Rules
	Fuzzy Logic Operators
	Activation Methods

	Defuzzifiers
	Engines
	Importers and Exporters
	FuzzyLite Language
	Factories
	Features

	Design of experiments
	Results and discussions
	Performance
	fuzzylite vs jfuzzylite
	jfuzzylite vs jfuzzylogic
	fuzzylite vs cfis
	fuzzylite vs matlab
	fuzzylite vs octave
	Current and previous versions of fuzzylite and jfuzzylite

	Ranking
	fuzzylite and jfuzzylite
	jfuzzylogic
	octave
	cfis and matlab

	Accuracy
	Numerical integration methods
	Rounding errors
	Membership functions

	Overall quality

	Conclusions and future work
	Acknowledgements
	Biographies
	Juan Rada-Vilela

	References

